Early life programming has important consequences for future health and wellbeing. A key new aspect is the impact of perinatal light on the circadian system. Postnatal light environment will program circadian behavior, together with cell morphology and clock gene function within the suprachiasmatic nucleus (SCN) of the hypothalamus, the principal circadian clock in mammals.
View Article and Find Full Text PDFNeurosci Biobehav Rev
May 2013
Mammals are born with an immature circadian system, which completes its development postnatally. Evidence suggests that the environment experienced by a newborn will impact and shape its development, which will have future consequences at the levels of circadian system function, circadian behaviour and physiology, and potentially, the animal's long-term health and welfare. Here we review the various stages in postnatal development of the circadian system, and discuss the data available on the long-term effects of early environment, in particular light environment, on the animal's brain, physiology and behaviour.
View Article and Find Full Text PDFIn mammals, early light experience during a critical period within the first 3 weeks of postnatal development has long-lasting effects on circadian locomotor activity behaviour and neuropeptide expression in the suprachiasmatic nucleus (SCN) of the hypothalamus, site of the principal pacemaker. Dopamine is thought to be involved in the modulation of photic input within the SCN and in tadpoles, the expression of tyrosine hydroxylase (TH), a rate-limiting enzyme in the synthesis of dopamine, in the SCN is altered by previous light history. We thus hypothesised that dopaminergic neurons may be important for the development of the adapted responses to light that we have previously observed.
View Article and Find Full Text PDF