LOTUS and Tudor domain containing proteins have critical roles in the germline. Proteins that contain these domains, such as Tejas/Tapas in Drosophila, help localize the Vasa helicase to the germ granules and facilitate piRNA-mediated transposon silencing. The homologous proteins in mammals, TDRD5 and TDRD7, are required during spermiogenesis.
View Article and Find Full Text PDFVasa homologs are ATP-dependent DEAD-box helicases, multipotency factors, and critical components that specify and protect the germline. They regulate translation, amplify piwi-interacting RNAs (piRNAs), and act as RNA solvents; however, the limited availability of mutagenesis-derived alleles and their wide range of phenotypes have complicated their analysis. Now, with clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), these limitations can be mitigated to determine why protein domains have been lost or retained throughout evolution.
View Article and Find Full Text PDFMembraneless organelles are distinct compartments within a cell that are not enclosed by a traditional lipid membrane and instead form through a process called liquid-liquid phase separation. Examples of these non-membrane-bound organelles include nucleoli, stress granules, P bodies, pericentriolar material and germ granules. Many recent studies have used Caenorhabditis elegans germ granules, known as P granules, to expand our understanding of the formation of these unique cellular compartments.
View Article and Find Full Text PDFInterleukin 21 (IL-21) plays key roles in humoral immunity and autoimmune diseases. It is known to function in mature CD4 T follicular B cell helper (T) cells, but its potential involvement in early T cell ontogeny is unclear. Here, we find that a significant population of newly activated thymic and peripheral CD4 T cells functionally expresses IL-21 soon after birth.
View Article and Find Full Text PDF