Background: Enteroendocrine cells (EECs) produce over 20 gut hormones which contribute to intestinal physiology, nutrient metabolism and the regulation of food intake. The objective of this study was to generate a comprehensive transcriptomic map of mouse EECs from the stomach to the rectum.
Methods: EECs were purified by flow-cytometry from the stomach, upper small intestine, lower small intestine, caecum and large intestine of NeuroD1-Cre mice, and analysed by single cell RNA sequencing.
Objectives: To analyse the peptidomics of mouse enteroendocrine cells (EECs) and human gastrointestinal (GI) tissue and identify novel gut derived peptides.
Methods: High resolution nano-flow liquid chromatography mass spectrometry (LC-MS/MS) was performed on (i) flow-cytometry purified NeuroD1 positive cells from mouse and homogenised human intestinal biopsies, (ii) supernatants from primary murine intestinal cultures, (iii) intestinal homogenates from mice fed high fat diet. Candidate bioactive peptides were selected on the basis of species conservation, high expression/biosynthesis in EECs and evidence of regulated secretionin vitro.