Background: Blood biomarkers can improve the ability to diagnose dementia, providing new information to better understand the pathophysiology and causes of the disease. Some studies with patients have already shown changes in metabolic profiles among patients with pathological cognitive decline or Alzheimer's disease, when compared to individuals with normal cognition.
Methods: To search for new metabolic biomarkers of dementia, we analyzed serum levels of several metabolites, measured by nuclear magnetic resonance spectroscopy, in elderly individuals, a group with normal cognitive decline (control), and three other groups with cognitive decline.
This work assesses the urinary metabolite signature of prematurity in newborns by nuclear magnetic resonance (NMR) spectroscopy, while establishing the role of possible confounders and signature specificity, through comparison to other disorders. Gender and delivery mode are shown to impact importantly on newborn urine composition, their analysis pointing out at specific metabolite variations requiring consideration in unmatched subject groups. Premature newborns are, however, characterized by a stronger signature of varying metabolites, suggestive of disturbances in nucleotide metabolism, lung surfactants biosynthesis and renal function, along with enhancement of tricarboxylic acid (TCA) cycle activity, fatty acids oxidation, and oxidative stress.
View Article and Find Full Text PDF