The objectives of this study were to evaluate tetrahydropyridine derivatives as efflux inhibitors and to understand the mechanism of action of the compounds by in silico studies. Minimum inhibitory concentration (MIC) determination, fluorometric methods and docking simulations were performed. The compounds NUNL02, NUNL09 and NUNL10 inhibited efflux, and NUNL02 is very likely a substrate of the transporter protein AcrB.
View Article and Find Full Text PDFSix compounds (1-6), isolated from the methanol extract of the roots of the African medicinal plant Zanthoxylum capense Thunb. (Rutaceae), and seven ester derivatives (7-13) were evaluated for their antibacterial activities and modulatory effects on the MIC of antibiotics (erythromycin, oxacillin, and tetracycline) and ethidium bromide (EtBr) against a Staphylococcus aureus reference strain (ATCC 6538). Using the same model, compounds 1-13 were also assessed for their potential as efflux pump inhibitors by a fluorometric assay that measures the accumulation of the broad range efflux pump substrate EtBr.
View Article and Find Full Text PDFResistance mediated by efflux has been recognized in Staphylococcus aureus in the last few decades, although its clinical relevance has only been recognized recently. The existence of only a few studies on the individual and overall contribution of efflux to resistance phenotypes associated with the need of well-established methods to assess efflux activity in clinical isolates contributes greatly to the lack of solid knowledge of this mechanism in S. aureus.
View Article and Find Full Text PDF