Diclofenac is a pharmaceutical active compound frequently detected in wastewater and water bodies, and often reported to be persistent and difficult to biodegrade. While many previous studies have focussed on assessing diclofenac biodegradation in nitrification and denitrification processes, this study focusses on diclofenac biodegradation in the enhanced biological phosphorus removal (EBPR) process, where the efficiency of this process for diclofenac biodegradation as well as the metabolites generated are not well understood. An enrichment of Accumulibacter polyphosphate accumulating organisms (PAOs) was operated in an SBR for over 300 d, and acclimatized to 20 μg/L of diclofenac, which is in a similar range to that observed in domestic wastewater influents.
View Article and Find Full Text PDFIn enhanced biological phosphorus removal (EBPR), Tetrasphaera can potentially be an abundant and important polyphosphate accumulating organism (PAO), however ongoing questions remain concerning its storage compounds, phosphorus (P) removal capabilities and metabolic behaviour. This study investigated each of these points in an enriched Tetrasphaera culture (95% biovolume). The enriched Tetrasphaera culture fermented amino acids, while also converting and storing diverse amino acids as aspartic and glutamic acid within cells.
View Article and Find Full Text PDFThe process involving mixed microbial cultures (MMCs) and waste-based substrates emerged as an alternative solution to reduce the market price of polyhydroxyalkanoates (PHAs). The selection of an efficient MMC that displays a significant PHA accumulation potential and a high growth rate is considered a key factor for the MMC PHA production feasibility. This study used a pilot plant to investigate the dynamics of growth vs storage in a mixed culture fed with fermented fruit waste under uncoupled carbon and nitrogen feeding.
View Article and Find Full Text PDFAccumulibacter is a well-known group of organisms, typically considered to be polyphosphate accumulating organisms (PAOs), but potentially capable of glycogen accumulating organism (GAO) metabolism under limiting influent phosphate levels. Metabolic features of Accumulibacter are typically linked to its phylogenetic identity at the Type or clade level, though it is unclear the extent to which Accumulibacter diversity can correlate with its capacity to perform P removal. This paper investigates the fine-scale diversity of Accumulibacter and its link with enhanced biological phosphorus removal (EBPR) performance under various operating conditions, to understand the conditions and community structure leading to successful and unsuccessful EBPR operation.
View Article and Find Full Text PDFThis work is focused on production of volatile fatty acids (VFA) through anaerobic digestion (AD) using raw (without pre-treatment) brewers' spent grain (BSG) as feedstock. VFAs are by-products from AD of organic wastes with wide potential industrial application in bioplastic production. A long term fed batch stirred-tank reactor was operated and the impact of three hydraulic retention times (HRT) and two organic loading rates (OLR) on VFA production was assessed.
View Article and Find Full Text PDFAn indigenous plant growth-promoting bacterium isolated from rhizosphere in the arid ecosystem was found to solubilize and accumulate phosphates. This isolate was identified as . (PHR6) by partial 16S rRNA gene sequence analysis.
View Article and Find Full Text PDFFood and beverage industry wastes present high amounts of organic matter, which may cause water quality degradation if not treated. Two-stage anaerobic digestion is a promising and efficient solution for the treatment of this type of wastes whilst producing bioenergy. The composition of fruit pulp waste varies throughout the different harvesting seasons, which may impact the process performance.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) are biobased and biodegradable polyesters with the potential to replace conventional plastics. Aeration requires large amounts of energy in PHA production by mixed microbial cultures (MMCs), particularly during the feast phase due to substrate uptake. The objective of this study was to investigate the impact of DO concentrations on microbial selection, substrate competition and PHA production performance by MMCs.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHA) are a sustainable alternative to conventional plastics that can be obtained from industrial wastes/by-products using mixed microbial cultures (MMC). MMC PHA production is commonly carried out in a 3-stage process of acidogenesis, PHA culture selection and accumulation. This research focused on the possibility of tailoring PHA by controlling the acidogenic reactor operating conditions, namely pH, using cheese whey as model feedstock.
View Article and Find Full Text PDFImmune response against an encoded antigenic protein can be elicited by including targeting sequences to DNA vaccines that promote protein sorting to processing pathways, related with antigen presentation by major histocompatibility complexes (MHC). Candidate DNA vaccines coding for neuraminidase 3 of the avian influenza virus were designed to encode different sequences that direct the protein to specific cellular compartments such as endoplasmic reticulum (i.e.
View Article and Find Full Text PDF