In order to obtain new functional soft systems for use as templating agents for the construction of functional mesostructured materials, the dynamic ordered soft systems formed by a hydrophilic ionic iridium(III) complex (IrPa) embedded into two different concentration F127-water mixtures have been investigated. To this aim, combined spectral and time-resolved photophysical techniques and rheological methods have been employed. The position of the chromophore inside the micellar, cubic and hexagonal phases of the F127 polymeric neutral surfactant in water was effectively determined.
View Article and Find Full Text PDFTwo anionic iridium complexes [(R-ppy)2Ir(O^N)]TBA with R-ppy = 2-phenylpyridine or 4,5'-dimethyl-2-phenylpyridine, O^N = dianionic form of orotic acid and TBA = tetrabutylammonium have been synthesised and fully characterised by UV-Vis, emission, IR, NMR and cyclic voltammetric studies. These cyclometallated luminescent complexes containing a dianionic bidentate ancillary ligand show bright emission (60-70% PLQY) with maxima in the green region of the visible spectrum. Coupled with the ionic iridium complexes [(ppy)2Ir(N^N)]X, where N^N = 2-picolylamine or 2,2'-bipyridyl, and X = Cl(-) or CH3CO2(-), a series of new soft salts of general formula [(ppy)2Ir(N^N)][(R-ppy)2Ir (O^N)] have been obtained and fully characterized, with enhanced luminescent properties up to ca.
View Article and Find Full Text PDFSynthesis, crystal structural determination and photophysical properties of a series of heteroleptic cationic cyclometalated iridium(III) derivatives of general formula [(ppy)(2)Ir(en)]X (X = ClO(4)(-) (1), PF(6)(-) (2), Cl(-) (3), BPh(4)(-) (4)), are described. The assembly of the common molecular building block allows to get highly luminescent crystalline materials or to assemble poorly luminescent supramolecular channelled architectures, for which the additional contribution of oxygen quenching effects has been observed. Moreover, the high reproducibility of the preparations of the crystalline materials in their specific crystalline phases, makes the control of the supramolecular organization of photo-active iridium(III) complexes within the crystalline structures a useful synthetic procedure for the construction of highly luminescent materials.
View Article and Find Full Text PDFA series of bischelate ionic silver complexes [Ag(L*)(2)][X] was prepared by complexation of a newly synthesized 2,2'-bipyridine containing chiral alkoxy chains in the 4,4' positions. The appropriate choice of the construction motifs allows the preparation of new materials in which several functionalities can be introduced. Indeed, when the anion X(-) is a triflate or a dodecylsulfate group, the right combination of intermolecular interactions promotes the production of liquid crystalline mesophases.
View Article and Find Full Text PDF