In regions where malaria transmission persists, the implementation of approaches aimed at eliminating parasites from the population can effectively decrease both burden of disease and transmission of infection. Thus, mass strategies that target symptomatic and asymptomatic infections at the same time may help countries to reduce transmission. This systematic review assessed the potential benefits and harms of mass testing and treatment (MTaT) to reduce malaria transmission.
View Article and Find Full Text PDFAs countries approach elimination of malaria, groups with increased exposure to malaria vectors or poor access to health services may serve as important human reservoirs of infection that help maintain transmission in the community. Parasitological testing and treatment targeted to these groups may reduce malaria transmission overall. This systematic review assessed the effectiveness of targeted testing and treatment (TTaT) to reduce malaria transmission, the contextual factors, and the results of modeling studies that estimated the intervention's potential impact.
View Article and Find Full Text PDFIn low- to very low-malaria transmission areas, most infections may be accrued within specific groups whose behaviors or occupations put them at increased risk of infection. If these infections comprise a large proportion of the reservoir of infection, targeting interventions to these groups could reduce transmission at the population level. We conducted a systematic review to assess the impact of providing antimalarials to groups of individuals at increased risk of malaria whose infections were considered to comprise a large proportion of the local reservoir of infections (targeted drug administration [TDA]).
View Article and Find Full Text PDFAs countries approach malaria elimination, imported cases of malaria make up a larger proportion of all cases and may drive malaria transmission. Targeted test and treat (TTaT) at points of entry (POEs) is a strategy that aims to reduce the number of imported infections in countries approaching elimination by testing and treating individuals at border crossings. No evidence has been systematically collected and evaluated to assess the impact and operational feasibility of this strategy.
View Article and Find Full Text PDFThe basis for an evidence-based recommendation is a well-conducted systematic review that synthesizes the primary literature relevant to the policy or program question of interest. In 2020, the WHO commissioned 10 systematic reviews of potential interventions in elimination or post-elimination settings to summarize their impact on malaria transmission. This paper describes the general methods used to conduct this series of systematic reviews and notes where individual reviews diverged from the common methodology.
View Article and Find Full Text PDFBiomaterials for antimalarial drug transport still need to be investigated in order to attain nanocarriers that can tackle essential issues related to malaria treatment, e.g. complying with size requirements and targeting specificity for their entry into Plasmodium-infected red blood cells (pRBCs), and limiting premature drug elimination or drug resistance evolution.
View Article and Find Full Text PDFIn this paper, nutriosomes (phospholipid vesicles associated with Nutriose® FM06) were modified to obtain new systems aimed at enhancing the efficacy of curcumin in counteracting malaria infection upon oral administration. Eudragit® L100, a pH-sensitive co-polymer, was added to these vesicles, thus obtaining eudragit-nutriosomes, to improve their in vivo performances. Liposomes without eudragit and nutriose were also prepared as a reference.
View Article and Find Full Text PDFCurrent strategies for the mass administration of antimalarial drugs demand oral formulations to target the asexual stages in the peripheral bloodstream, whereas recommendations for future interventions stress the importance of also targeting the transmission stages of the parasite as it passes between humans and mosquitoes. Orally administered polyamidoamine (PAA) nanoparticles conjugated to chloroquine reached the blood circulation and cured -infected mice, slightly improving the activity of the free drug and inducing in the animals immunity against malaria. Liquid chromatography with tandem mass spectrometry analysis of affinity chromatography-purified PAA ligands suggested a high adhesiveness of PAAs to proteins, which might be the mechanism responsible for the preferential binding of PAAs to -infected erythrocytes vs.
View Article and Find Full Text PDFCurcumin is an antimalarial compound easy to obtain and inexpensive, having shown little toxicity across a diverse population. However, the clinical use of this interesting polyphenol has been hampered by its poor oral absorption, extremely low aqueous solubility and rapid metabolism. In this study, we have used the anionic copolymer Eudragit S100 to assemble liposomes incorporating curcumin and containing either hyaluronan (Eudragit-hyaluronan liposomes) or the water-soluble dextrin Nutriose FM06 (Eudragit-nutriosomes).
View Article and Find Full Text PDF