Publications by authors named "Elisa Vuorinen"

Background: Combining cytotoxic chemotherapy or novel anticancer drugs with T-cell modulators holds great promise in treating advanced cancers. However, the response varies depending on the tumor immune microenvironment (TIME). Therefore, there is a clear need for pharmacologically tractable models of the TIME to dissect its influence on mono- and combination treatment response at the individual level.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the progression of low-grade diffuse astrocytomas into grade 4 tumors and its impact on patient outcomes, highlighting the need for better understanding to enhance patient care.
  • Researchers analyzed genetic data from a cohort of patients with IDH-mutant astrocytomas, revealing significant alterations like increased chromosomal rearrangements and inactivation of key genes related to cell cycle regulation after treatment.
  • Results indicate that combined postoperative radiation and chemotherapy, especially temozolomide, may lead to improved survival outcomes, particularly in patients with grade 3 tumors, suggesting a need for more effective treatment strategies.
View Article and Find Full Text PDF

Oligodendrogliomas are typically associated with the most favorable prognosis among diffuse gliomas. However, many of the tumors progress, eventually leading to patient death. To characterize the changes associated with oligodendroglioma recurrence and progression, we analyzed two recurrent oligodendroglioma tumors upon diagnosis and after tumor relapse based on whole-genome and RNA sequencing.

View Article and Find Full Text PDF

Transcription factor binding to DNA is a central mechanism regulating gene expression. Thus, thorough characterization of this process is essential for understanding cellular biology in both health and disease. We combined data from three sequencing-based methods to unravel the DNA binding function of the novel ZNF414 protein in cells representing two tumor types.

View Article and Find Full Text PDF

Following publication of the original article [1], the authors notified us that the Additional File 1 contains reviewer comments instead of the Supplementary tables.

View Article and Find Full Text PDF

The immunosuppressive microenvironment in glioblastoma (GBM) prevents an efficient antitumoral immune response and enables tumor formation and growth. Although an understanding of the nature of immunosuppression is still largely lacking, it is important for successful cancer treatment through immune system modulation. To gain insight into immunosuppression in GBM, we performed a computational analysis to model relative immune cell content and type of immune response in each GBM tumor sample from The Cancer Genome Atlas RNA-seq data set.

View Article and Find Full Text PDF

Background: Nucleocytoplasmic transport is a tightly regulated process carried out by specific transport machinery, the defects of which may lead to a number of diseases including cancer. Karyopherin alpha 7 (KPNA7), the newest member of the karyopherin alpha nuclear importer family, is expressed at a high level during embryogenesis, reduced to very low or absent levels in most adult tissues but re-expressed in cancer cells.

Methods: We used siRNA-based knock-down of KPNA7 in cancer cell lines, followed by functional assays (proliferation and cell cycle) and immunofluorescent stainings to determine the role of KPNA7 in regulation of cancer cell growth, proper mitosis and nuclear morphology.

View Article and Find Full Text PDF

Karyopherin alpha 7 (KPNA7) belongs to a family of nuclear import proteins that recognize and bind nuclear localization signals (NLSs) in proteins to be transported to the nucleus. Previously we found that KPNA7 is overexpressed in a subset of pancreatic cancer cell lines and acts as a critical regulator of growth in these cells. This characteristic of KPNA7 is likely to be mediated by its cargo proteins that are still mainly unknown.

View Article and Find Full Text PDF

The 2q37 and 17q12-q22 loci are linked to an increased prostate cancer (PrCa) risk. No candidate gene has been localized at 2q37 and the HOXB13 variant G84E only partially explains the linkage to 17q21-q22 observed in Finland. We screened these regions by targeted DNA sequencing to search for cancer-associated variants.

View Article and Find Full Text PDF

Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer.

View Article and Find Full Text PDF