Publications by authors named "Elisa Thoral"

The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field.

View Article and Find Full Text PDF

Although mitochondrial respiration is believed to explain a substantial part of the variation in resting metabolic rate (RMR), few studies have empirically studied the relationship between organismal and cellular metabolism. We therefore investigated the relationship between RMR and mitochondrial respiration of permeabilized blood cells in wild great tits (Parus major L.).

View Article and Find Full Text PDF

A fundamental issue in the metabolic field is whether it is possible to understand underlying mechanisms that characterize individual variation. Whole-animal performance relies on mitochondrial function as it produces energy for cellular processes. However, our lack of longitudinal measures to evaluate how mitochondrial function can change within and among individuals and with environmental context makes it difficult to assess individual variation in mitochondrial traits.

View Article and Find Full Text PDF

Lactate is now recognized as a regulator of fuel selection in mammals because it inhibits lipolysis by binding to the hydroxycarboxylic acid receptor 1 (HCAR1). The goals of this study were to quantify the effects of exogenous lactate on: ) lipolytic rate or rate of appearance of glycerol in the circulation ( glycerol) and hepatic glucose production ( glucose), and ) key tissue proteins involved in lactate signaling, glucose transport, glycolysis, gluconeogenesis, lipolysis, and β-oxidation in rainbow trout. Measurements of fuel mobilization kinetics show that lactate does not affect lipolysis as it does in mammals ( glycerol remains at 7.

View Article and Find Full Text PDF

Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field.

View Article and Find Full Text PDF

Aquatic ecosystems can exhibit seasonal variation in resource availability and animals have evolved to cope with the associated caloric restriction. During winter in the NW Mediterranean Sea, the European sardine Sardina pilchardus naturally experiences caloric restriction owing to a decrease in the diversity and quantity of plankton. However, ongoing global warming has had deleterious effects on plankton communities such that food shortages may occur throughout the year, especially under warm conditions in the summer.

View Article and Find Full Text PDF

Heat waves are extreme thermal events whose frequency and intensity will increase with global warming. As metabolic responses to temperature are time-dependent, we explored the effects of an exposure to several heat waves on the mitochondrial metabolism of zebrafish Danio rerio. For this purpose, zebrafish were acclimated at 26 °C or 31 °C for 4 weeks and some fish acclimated at 26 °C underwent 2 types of heat waves: 2 periods of 5 days at 31 °C or 10 days at 31 °C.

View Article and Find Full Text PDF

Some hypoxia-tolerant species, such as goldfish, experience intermittent and severe hypoxia in their natural habitat, causing them to develop multiple physiological adaptations. However, in fish, the metabolic impact of regular hypoxic exposure on swimming performance in normoxia is less well understood. Therefore, we experimentally tested whether chronic exposure to constant (30 days at 10% air saturation) or intermittent hypoxia (3 h in normoxia and 21 h in hypoxia, 5 days a week) would result in similar metabolic and swimming performance benefits after reoxygenation.

View Article and Find Full Text PDF

Global warming is causing profound modifications of aquatic ecosystems and one major outcome appears to be a decline in adult size of many fish species. Over the last decade, sardine populations in the Gulf of Lions (NW Mediterranean Sea) have shown severe declines in body size and condition as well as disappearance of the oldest individuals, which could not be related to overfishing, predation pressure or epizootic diseases. In this study, we investigated whether this situation reflects a bottom-up phenomenon caused by reduced size and availability of prey that could lead to energetic constraints.

View Article and Find Full Text PDF

Aerobic metabolism of aquatic ectotherms is highly sensitive to fluctuating climates. Many mitochondrial traits exhibit phenotypic plasticity in response to acute variations in temperature and oxygen availability. These responses are critical for understanding the effects of environmental variations on aquatic ectotherms' performance.

View Article and Find Full Text PDF

We investigated links between swimming behavior and muscle bioenergetics in two emblematic Mediterranean fish species that have very different ecologies and activity levels. European sardines Sardina pilchardus are pelagic, they swim aerobically, school constantly and have high muscle fat content. Gilthead seabream Sparus aurata are bentho-pelagic, they show discontinuous spontaneous swimming patterns and store less fat in their muscle.

View Article and Find Full Text PDF