Emergent electronic phenomena, from superconductivity to ferroelectricity, magnetism, and correlated many-body band gaps, have been observed in domains created by stacking and twisting atomic layers of Van der Waals materials. In graphene, emergent properties have been observed in ABC stacking domains obtained by exfoliation followed by expert mechanical twisting and alignment with the desired orientation, a process very challenging and nonscalable. Here, conductive atomic force microscopy shows in untwisted epitaxial graphene grown on SiC the surprising presence of striped domains with dissimilar conductance, a contrast that demonstrates the presence of ABA and ABC domains since it matches exactly the conductivity difference observed in ABA/ABC domains in twisted exfoliated graphene and calculated by density functional theory.
View Article and Find Full Text PDFThe rise in antibiotic-resistant pathogens, highly infectious viruses, and chronic diseases has prompted the search for rapid and versatile medical tests that can be performed by the patient. Field-effect transistor (FET)-based electronic biosensing platforms are particularly attractive due to their sensitivity, fast turn-around time, potential for parallel detection of multiple pathogens, and compatibility with semiconductor manufacturing. However, an unmet critical need is a scalable, site-selective multiplexed biofunctionalization method with nanoscale precision for immobilizing different types of pathogen-specific bioreceptors on individual FETs, preventing parallel detection of multiple targets.
View Article and Find Full Text PDFIn the field of hydrogen production, MoS demonstrates good catalytic properties for the hydrogen evolution reaction (HER) which improve when doped with metal cations. However, while the role of sulfur atoms as active sites in the HER is largely reported, the role of metal atoms ( molybdenum or the dopant cations) has yet to be studied in depth. To understand the role of the metal dopant, we study MoS thin films doped with Co and Mn ions.
View Article and Find Full Text PDFColloidal quantum dot (CQD) infrared (IR) photodetectors can be fabricated and operated with larger spectral tunability, fewer limitations in terms of cooling requirements and substrate lattice matching, and at a potentially lower cost than detectors based on traditional bulk materials. Silver selenide (AgSe) has emerged as a promising sustainable alternative to current state-of-the-art toxic semiconductors based on lead, cadmium, and mercury operating in the IR. However, an impeding gap in available absorption bandwidth for AgSe CQDs exists in the short-wave infrared (SWIR) region due to degenerate doping by the environment, switching the CQDs from intrinsic interband semiconductors in the near-infrared (NIR) to intraband absorbing CQDs in the mid-wave infrared (MWIR).
View Article and Find Full Text PDFTailoring nanoscale catalysts to targeted applications is a vital component in reducing the carbon footprint of industrial processes; however, understanding and controlling the nanostructure influence on catalysts is challenging. Molybdenum disulfide (MoS), a transition metal dichalcogenide (TMD) material, is a popular example of a nonplatinum-group-metal catalyst with tunable nanoscale properties. Doping with transition metal atoms, such as cobalt, is one method of enhancing its catalytic properties.
View Article and Find Full Text PDFSilicon carbide has excellent mechanical properties such as high hardness and strength, but its applications for body armor and protective coating solutions are limited by its poor toughness. It has been demonstrated that epitaxial graphene-coated SiC can enhance SiC mechanical properties due to the pressure-activated phase transition into a sp diamond structure. Here, we show that atomically thin graphene coatings increase the hardness of SiC even for indentation depths of ∼10 μm.
View Article and Find Full Text PDFAs the field of low-dimensional materials (1D or 2D) grows and more complex and intriguing structures are continuing to be found, there is an emerging need for techniques to characterize the nanoscale mechanical properties of all kinds of 1D/2D materials, in particular in their most practical state: sitting on an underlying substrate. While traditional nanoindentation techniques cannot accurately determine the transverse Young's modulus at the necessary scale without large indentations depths and effects to and from the substrate, herein an atomic-force-microscopy-based modulated nanomechanical measurement technique with Angstrom-level resolution (MoNI/ÅI) is presented. This technique enables non-destructive measurements of the out-of-plane elasticity of ultra-thin materials with resolution sufficient to eliminate any contributions from the substrate.
View Article and Find Full Text PDFSilicon carbide (SiC) is one of the hardest known materials. Its exceptional mechanical properties combined with its high thermal conductivity make it a very attractive material for a variety of technological applications. Recently, it is discovered that two-layer epitaxial graphene films on SiC can undergo a pressure activated phase transition into a sp diamene structure at room temperature.
View Article and Find Full Text PDFReproducing in vitro the complex multiscale physical features of human tissues creates novel biomedical opportunities and fundamental understanding of cell-environment interfaces and interactions. While stiffness has been recognized as a key driver of cell behavior, systematic studies on the role of stiffness have been limited to values in the KPa-MPa range, significantly below the stiffness of bone. Here, a platform enabling the tuning of the stiffness of a biocompatible polymeric interface up to values characteristic of human bone is reported, which are in the GPa range, by using extremely thin polymer films on glass and cross-linking the films using ultraviolet (UV) light irradiation.
View Article and Find Full Text PDFUnderstanding the interfacial properties between an atomic layer and its substrate is of key interest at both the fundamental and technological levels. From Fermi level pinning to strain engineering and superlubricity, the interaction between a single atomic layer and its substrate governs electronic, mechanical and chemical properties. Here, we measure the hardly accessible interfacial transverse shear modulus of an atomic layer on a substrate.
View Article and Find Full Text PDFUnderstanding phase transformations in 2D materials can unlock unprecedented developments in nanotechnology, since their unique properties can be dramatically modified by external fields that control the phase change. Here, experiments and simulations are used to investigate the mechanical properties of a 2D diamond boron nitride (BN) phase induced by applying local pressure on atomically thin h-BN on a SiO substrate, at room temperature, and without chemical functionalization. Molecular dynamics (MD) simulations show a metastable local rearrangement of the h-BN atoms into diamond crystal clusters when increasing the indentation pressure.
View Article and Find Full Text PDFUnderstanding the atomistic origin of defects in two-dimensional transition metal dichalcogenides, their impact on the electronic properties, and how to control them is critical for future electronics and optoelectronics. Here, we demonstrate the integration of thermochemical scanning probe lithography (tc-SPL) with a flow-through reactive gas cell to achieve nanoscale control of defects in monolayer MoS. The tc-SPL produced defects can present either p- or n-type doping on demand, depending on the used gasses, allowing the realization of field effect transistors, and p-n junctions with precise sub-μm spatial control, and a rectification ratio of over 10.
View Article and Find Full Text PDFTransient self-assembly of dipeptide nanofibers with lifetimes that are predictably variable through dipeptide sequence design are presented. This was achieved using 1,8-naphthalimide (NI) amino acid methyl-esters (Phe, Tyr, Leu) that are biocatalytically coupled to amino acid-amides (Phe, Tyr, Leu, Val, Ala, Ser) to form self-assembling NI-dipeptides. However, competing hydrolysis of the dipeptides results in disassembly.
View Article and Find Full Text PDFIntegrated optically inspired wave-based processing is envisioned to outperform digital architectures in specific tasks, such as image processing and speech recognition. In this view, spin waves represent a promising route due to their nanoscale wavelength in the gigahertz frequency range and rich phenomenology. Here, a versatile, optically inspired platform using spin waves is realized, demonstrating the wavefront engineering, focusing, and robust interference of spin waves with nanoscale wavelength.
View Article and Find Full Text PDFThe ability to precisely control the localization of enzymes on a surface is critical for several applications including biosensing, bionanoreactors, and single molecule studies. Despite recent advances, fabrication of enzyme patterns with resolution at the single enzyme level is limited by the lack of lithography methods that combine high resolution, compatibility with soft, polymeric structures, ease of fabrication, and high throughput. Here, a method to generate enzyme nanopatterns (using thermolysin as a model system) on a polymer surface is demonstrated using thermochemical scanning probe lithography (tc-SPL).
View Article and Find Full Text PDFHigh-throughput and large-scale patterning of enzymes with sub-10 nm resolution, the size range of individual protein molecules, is crucial for propelling advancement in a variety of areas, from the development of chip-based biomolecular nano-devices to molecular-level studies of cell biology. Despite recent developments in bio-nanofabrication technology, combining 10 nm resolution with high-throughput and large-scale patterning of enzymes is still an open challenge. Here, we demonstrate a high resolution and high-throughput patterning method to generate enzyme nanopatterns with sub-10 nm resolution by using thermochemical scanning probe lithography (tc-SPL).
View Article and Find Full Text PDFDuring conventional nanoindentation measurements, the indentation depths are usually larger than 1-10 nm, which hinders the ability to study ultra-thin films (<10 nm) and supported atomically thin two-dimensional (2D) materials. Here, we discuss the development of modulated Å-indentation to achieve sub-Å indentations depths during force-indentation measurements while also imaging materials with nanoscale resolution. Modulated nanoindentation (MoNI) was originally invented to measure the radial elasticity of multi-walled nanotubes.
View Article and Find Full Text PDFIn the version of this Article originally published, the second affiliation for Walter A. de Heer had not been included; it should be 'TICNN, Tianjin University, Tianjin, China'. This has now been added and the numbering of subsequent affiliations amended accordingly in all versions of the Article.
View Article and Find Full Text PDFA large effort is underway to investigate the properties of two-dimensional (2D) materials for their potential to become building blocks in a variety of integrated nanodevices. In particular, the ability to understand the relationship between friction, adhesion, electric charges and defects in 2D materials is of key importance for their assembly and use in nano-electro-mechanical and energy harvesting systems. Here, we report on a new oscillatory behavior of nanoscopic friction in continuous polycrystalline MoS2 films for an odd and even number of atomic layers, where odd layers show higher friction and lower work function.
View Article and Find Full Text PDFAtomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation.
View Article and Find Full Text PDFThe effects of increasing the driving forces for a 1-D assembly of nanoparticles onto a surface are investigated with experimental results and models. Modifications, which take into account not only the particle-particle interactions but also particle-surface interactions, to previously established extended random sequential adsorption simulations are tested and verified. Both data and model are compared against the heterogeneous random sequential adsorption simulations, and finally, a connection between the two models is suggested.
View Article and Find Full Text PDFMonolayer MoS can effectively screen the vdW interaction of underlying substrates with external systems by >90% because of the substantial increase in the separation between the substrate and external systems due to the presence of the monolayer. This substantial screening of vdW interactions by MoS monolayer is different from what reported at graphene.
View Article and Find Full Text PDFThe ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity.
View Article and Find Full Text PDFTwo-dimensional materials, such as graphene and MoS2, are films of a few atomic layers in thickness with strong in-plane bonds and weak interactions between the layers. The in-plane elasticity has been widely studied in bending experiments where a suspended film is deformed substantially; however, little is known about the films' elastic modulus perpendicular to the planes, as the measurement of the out-of-plane elasticity of supported 2D films requires indentation depths smaller than the films' interlayer distance. Here, we report on sub-ångström-resolution indentation measurements of the perpendicular-to-the-plane elasticity of 2D materials.
View Article and Find Full Text PDF