Graphene oxide nanosheets (GO) were reported to alter neurobiological processes involving cell membrane dynamics. GO ability to reversibly downregulate specifically glutamatergic synapses underpins their potential in future neurotherapeutic developments. Aberrant glutamate plasticity contributes to stress-related psychopathology and drugs which target dysregulated glutamate represent promising treatments.
View Article and Find Full Text PDFEngineered small graphene oxide (s-GO) sheets were previously shown to reversibly down-regulate glutamatergic synapses in the hippocampus of juvenile rats, disclosing an unexpected translational potential of these nanomaterials to target selective synapses in vivo. Synapses are anatomical specializations acting in the Central Nervous System (CNS) as functional interfaces among neurons. Dynamic changes in synaptic function, named synaptic plasticity, are crucial to learning and memory.
View Article and Find Full Text PDF