Publications by authors named "Elisa P Pellizzer"

The use of marine microorganisms in the treatment of dyes and textile effluents is promising in view of their tolerance to salinity, a characteristic found in this kind of effluent. In this study, different culture conditions were applied to evaluate the decolorization, degradation, and detoxification of Sulphur Indigo Blue (SIB) by the marine-derived basidiomycete Paramarasmius palmivorus CBMAI 1062. Low salt concentration (SLS) and high salt concentration (SMASHS) media were used.

View Article and Find Full Text PDF

Cold-adapted microorganisms can produce enzymes with activity at low and mild temperatures, which can be applied to environmental biotechnology. This study aimed to characterize 20 Antarctic fungi to identify their genus (ITS rDNA marker) and growth temperatures and evaluate their ability to decolorize and detoxify the textile dye indigo carmine (IC). An individual screening was performed to assess the decolorization and detoxification of IC by the isolates, as well as in consortia with other fungi.

View Article and Find Full Text PDF

Harsh and extreme environments, such as Antarctica, offer unique opportunities to explore new microbial taxa and biomolecules. Given the limited knowledge on microbial diversity, this study aimed to compile, analyze and compare a subset of the biobank of Antarctic fungi maintained at the UNESP's Central of Microbial Resources (CRM-UNESP). A total of 711 isolates (240 yeasts and 471 filamentous fungi) from marine and terrestrial samples collected at King George Island (South Shetland Islands, Antarctica) were used with the primary objective of investigating their presence in both marine and terrestrial environments.

View Article and Find Full Text PDF

Antarctica has one of the most hostile conditions on the planet. The environmental characteristics found in this region favor the development of extremophile microorganisms, which are poorly explored biotechnologically. In this context, this study aimed at selectively isolating fungi with potential for the bioremediation of a textile dye.

View Article and Find Full Text PDF

Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms.

View Article and Find Full Text PDF