The concomitant occurrence of tissue growth and organization is a hallmark of organismal development. This often means that proliferating and differentiating cells are found at the same time in a continuously changing tissue environment. How cells adapt to architectural changes to prevent spatial interference remains unclear.
View Article and Find Full Text PDFCorrect nervous system development depends on the timely differentiation of progenitor cells into neurons. While the output of progenitor differentiation is well investigated at the population and clonal level, how stereotypic or variable fate decisions are during development is still more elusive. To fill this gap, we here follow the fate outcome of single neurogenic progenitors in the zebrafish retina over time using live imaging.
View Article and Find Full Text PDFDuring brain development, progenitor cells need to balanceproliferation and differentiation in order to generate different neurons in the correct numbers and proportions. Currently, the patterns of multipotent progenitor divisions that lead to neurogenic entry and the factors that regulate them are not fully understood. We here use the zebrafish retina to address this gap, exploiting its suitability for quantitative live-imaging.
View Article and Find Full Text PDFDuring development, cells need to make decisions about their fate in order to ensure that the correct numbers and types of cells are established at the correct time and place in the embryo. Such cell fate decisions are often classified as deterministic or stochastic. However, although these terms are clearly defined in a mathematical sense, they are sometimes used ambiguously in biological contexts.
View Article and Find Full Text PDFDendritic atrophy, defined as the reduction in complexity of the neuronal arborization, is a hallmark of several neurodevelopmental disorders, including Rett Syndrome (RTT). RTT, affecting 1:10,000 girls worldwide, is mainly caused by mutations in the MECP2 gene and has no cure. We describe here an in vitro model of dendritic atrophy in Mecp2 mouse hippocampal primary cultures, suitable for phenotypic drug-screening.
View Article and Find Full Text PDF