Publications by authors named "Elisa Nemes"

Alveolar macrophages and other myeloid cells in the human airways are the primary cell types responding to respiratory pathogens. Here, we present a protocol for in vitro stimulation of cryopreserved human bronchoalveolar lavage (BAL) cells with mycobacterial antigens for phenotyping and quantifying proinflammatory cytokine responses in myeloid cells by mass cytometry. We demonstrate that the measure of markers of myeloid lineage and function is stable after freezing stained cells thereby allowing for batched analyses and/or machine downtime.

View Article and Find Full Text PDF
Article Synopsis
  • The focus this year is on promoting women in science by sharing their experiences and insights.
  • A variety of women from different research fields contribute their perspectives on their scientific work.
  • The discussion includes their journeys in establishing a lab as independent researchers, highlighting the challenges and successes they face.
View Article and Find Full Text PDF

Antibody features vary with tuberculosis (TB) disease state. Whether clinical variables, such as age or sex, influence associations between Mycobacterium tuberculosis-specific antibody responses and disease state is not well explored. Here we profiled Mycobacterium tuberculosis-specific antibody responses in 140 TB-exposed South African individuals from the Adolescent Cohort Study.

View Article and Find Full Text PDF

This 27-color flow cytometry antibody panel allows broad immune-profiling of major leukocyte subsets in human whole blood (WB). It includes lineage markers to identify myeloid and lymphoid cell populations including granulocytes, monocytes, myeloid dendritic cells (mDCs), natural killer (NK) cells, NKT-like cells, B cells, conventional CD4 and CD8 T cells, γδ T cells, mucosa-associated invariant T (MAIT) cells and innate lymphoid cells (ILC). To further characterize each of these populations, markers defining stages of cell differentiation (CCR7, CD27, CD45RA, CD127, CD57), cytotoxic potential (perforin, granzyme B) and cell activation/proliferation (HLA-DR, CD38, Ki-67) were included.

View Article and Find Full Text PDF

Intro: Viruses, including SARS-CoV-2, which causes COVID-19, are constantly changing. These genetic changes (aka mutations) occur over time and can lead to the emergence of new variants that may have different characteristics. After the first SARS-CoV-2 genome was published in early 2020, scientists all over the world soon realized the immediate need to obtain as much genetic information from as many strains as possible.

View Article and Find Full Text PDF

We developed a flow cytometry-based assay, termed Differential Leukocyte Counting and Immunophenotyping in Cryopreserved Ex vivo whole blood (DLC-ICE), that allows quantification of absolute counts and frequencies of leukocyte subsets and measures expression of activation, phenotypic and functional markers. We evaluated the performance of the DLC-ICE assay by determining inter-operator variability for processing fresh whole blood (WB) from healthy donors collected at multiple clinical sites. In addition, we assessed inter-operator variability for staining of fixed cells and robustness across different anticoagulants.

View Article and Find Full Text PDF
Article Synopsis
  • There is an urgent need for better immunization strategies against tuberculosis (TB) than the current BCG vaccine, as clinical development is limited by not having clear immune correlates of protection (CoPs).
  • Two phase 2b clinical trials have been conducted, one examining BCG re-vaccination in adolescents and the other focusing on the M72/AS01 vaccine in adults, both showing partial protection against TB infections.
  • Collaborative research programs aim to identify CoPs against TB using advanced technologies and international expertise, with defined hypotheses on immune responses, a strategic data analysis framework, and plans for exploratory analyses to create new hypotheses.
View Article and Find Full Text PDF

Objectives: The bacille Calmette-Guérin (BCG) vaccine is usually administered at birth to protect against severe forms of tuberculosis in children. BCG also confers some protection against other infections, possibly mediated by innate immune training. We investigated whether newborn BCG vaccination modulates myeloid and natural killer (NK) cell responses to mycobacteria.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a major public health problem and we lack a comprehensive understanding of how () infection impacts host immune responses. We compared the induced immune response to TB antigen, BCG and IL-1β stimulation between latently infected individuals (LTBI) and active TB patients. This revealed distinct responses between TB/LTBI at transcriptomic, proteomic and metabolomic levels.

View Article and Find Full Text PDF

Tuberculosis (TB) is a leading cause of global child mortality. Until the turn of the 21st century, Mycobacterium bovis bacille Calmette-Guerin (BCG) was the only vaccine to prevent TB. The pediatric TB vaccine pipeline has advanced in the past decade to include the evaluation of novel whole cell vaccines to replace infant BCG and investigation of subunit and whole cell vaccines to boost TB immunity during adolescence.

View Article and Find Full Text PDF

New tuberculosis vaccine candidates that are in the development pipeline need to be studied in people with HIV, who are at high risk of acquiring Mycobacterium tuberculosis infection and tuberculosis disease and tend to develop less robust vaccine-induced immune responses. To address the gaps in developing tuberculosis vaccines for people with HIV, a series of symposia was held that posed six framing questions to a panel of international experts: What is the use case or rationale for developing tuberculosis vaccines? What is the landscape of tuberculosis vaccines? Which vaccine candidates should be prioritised? What are the tuberculosis vaccine trial design considerations? What is the role of immunological correlates of protection? What are the gaps in preclinical models for studying tuberculosis vaccines? The international expert panel formulated consensus statements to each of the framing questions, with the intention of informing tuberculosis vaccine development and the prioritisation of clinical trials for inclusion of people with HIV.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a leading infectious cause of death worldwide and the coronavirus disease 2019 pandemic has negatively impacted the global TB burden of disease indicators. If the targets of TB mortality and incidence reduction set by the international community are to be met, new more effective adult and adolescent TB vaccines are urgently needed. There are several new vaccine candidates at different stages of clinical development.

View Article and Find Full Text PDF

Background: We evaluated the diagnostic and prognostic performance of a transcriptomic signature of tuberculosis (TB) risk (RISK11) and QuantiFERON-TB Gold-plus (QFTPlus) as combination biomarkers of TB risk.

Methods: Healthy South Africans who were HIV-negative aged 18-60 years with baseline RISK11 and QFTPlus results were evaluated in a prospective cohort study conducted between Sept 20, 2016 and Dec 20, 2019. Prevalence and incidence-rate ratios were used to evaluate risk of TB.

View Article and Find Full Text PDF

Immune reconstitution inflammatory syndrome (IRIS) can be a complication of antiretroviral therapy (ART) in patients with advanced HIV, but its pathogenesis is uncertain. In tuberculosis (TB) endemic countries, IRIS is often associated with mycobacterial infections or Bacille-Calmette-Guerin (BCG) vaccination in children. With no predictive or confirmatory tests at present, IRIS remains a diagnosis of exclusion.

View Article and Find Full Text PDF

Background: Non-protein antigen classes can be presented to T cells by near-monomorphic antigen-presenting molecules such as CD1, MR1, and butyrophilin 3A1. Such T cells, referred to as donor unrestricted T (DURT) cells, typically express stereotypic T cell receptors. The near-unrestricted nature of DURT cell antigen recognition is of particular interest for vaccine development, and we sought to define the roles of DURT cells, including MR1-restricted MAIT cells, CD1b-restricted glucose monomycolate (GMM)-specific T cells, CD1d-restricted NKT cells, and γδ T cells, in vaccination against Mycobacterium tuberculosis.

View Article and Find Full Text PDF

The rapid development of COVID-19 vaccines was the result of decades of research to establish flexible vaccine platforms and understand pathogens with pandemic potential, as well as several novel changes to the vaccine discovery and development processes that partnered industry and governments. And while vaccines offer the potential to drastically improve global health, low-and-middle-income countries around the world often experience reduced access to vaccines and reduced vaccine efficacy. Addressing these issues will require novel vaccine approaches and platforms, deeper insight how vaccines mediate protection, and innovative trial designs and models.

View Article and Find Full Text PDF

Reversion of immune sensitization tests for (M.tb) infection, such as interferon-gamma release assays or tuberculin skin test, has been reported in multiple studies. We hypothesized that QuantiFERON-TB Gold (QFT) reversion is associated with a decline of M.

View Article and Find Full Text PDF

The risk of tuberculosis (TB) disease is higher in individuals with recent Mycobacterium tuberculosis (M.tb) infection compared to individuals with more remote, established infection. We aimed to define blood-based biomarkers to distinguish between recent and remote infection, which would allow targeting of recently infected individuals for preventive TB treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Recent Mycobacterium tuberculosis (M.tb) infections carry a greater risk of developing into tuberculosis disease compared to older, persistent infections, but current tests can't differentiate between them.
  • This study tested healthy South African adolescents to characterize the immune responses associated with recent and persistent M.tb infections, focusing on various T cell profiles using QuantiFERON-TB Gold.
  • Findings revealed that activated CD4 T cells specific to M.tb were the best indicators of recent infection, suggesting that these T cell responses could serve as reliable biomarkers to distinguish between recent and remote infections.
View Article and Find Full Text PDF

Current diagnostic tests fail to identify individuals at higher risk of progression to tuberculosis disease, such as those with recent infection, who should be prioritized for targeted preventive treatment. To define a blood-based biomarker, measured with a simple flow cytometry assay, that can stratify different stages of tuberculosis infection to infer risk of disease. South African adolescents were serially tested with QuantiFERON-TB Gold to define recent (QuantiFERON-TB conversion <6 mo) and persistent (QuantiFERON-TB+ for >1 yr) infection.

View Article and Find Full Text PDF

The efficacy of bacille Calmette-Guerin (BCG) vaccination against tuberculosis is highly variable, and protective immunity elicited by BCG is poorly understood. We compared the cytokine/chemokine profiles of peripheral blood mononuclear cells (PBMC) obtained from infants BCG-vaccinated at birth to those of PBMC obtained from infants before (delayed) BCG vaccination. The PBMC from 10-week-old BCG-vaccinated infants released higher levels of pro-inflammatory molecules than PBMCs from the nonvaccinated counterpart.

View Article and Find Full Text PDF

Background: Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) infection and is a major public health problem. Clinical challenges include the lack of a blood-based test for active disease. Current blood-based tests, such as QuantiFERON (QFT) do not distinguish active TB disease from asymptomatic Mtb infection.

View Article and Find Full Text PDF

MR1-restricted T (MR1T) cells are defined by their recognition of metabolite antigens presented by the monomorphic MHC class 1-related molecule, MR1, the most highly conserved MHC class I related molecule in mammalian species. Mucosal-associated invariant T (MAIT) cells are the predominant subset of MR1T cells expressing an invariant TCR α-chain, TRAV1-2. These cells comprise a T cell subset that recognizes and mediates host immune responses to a broad array of microbial pathogens, including .

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how different vaccines help the body's immune system fight off a bacteria called Mycobacterium tuberculosis, which causes TB.
  • They tested a new vaccine called H4:IC31 and an old one known as BCG to see how well they worked in about 30 people in each group.
  • The study found that H4:IC31 created special T cells that help fight the bacteria, and BCG boosted other immune cells, showing that both vaccines affect how the body responds to infections.
View Article and Find Full Text PDF

The current tuberculosis (TB) vaccine, Bacille Calmette-Guerin (BCG), is effective in preventing TB in young children but was developed without a basic understanding of human immunology. Most modern TB vaccine candidates have targeted CD4 T cell responses, thought to be important for protection against TB disease, but not known to be sufficient or critical for protection. Advances in knowledge of host responses to TB afford opportunities for developing TB vaccines that target immune components not conventionally considered.

View Article and Find Full Text PDF