Background: The scope of this work is to build a Machine Learning model able to predict patients risk to contract a multidrug resistant urinary tract infection (MDR UTI) after hospitalization. To achieve this goal, we used different popular Machine Learning tools. Moreover, we integrated an easy-to-use cloud platform, called DSaaS (Data Science as a Service), well suited for hospital structures, where healthcare operators might not have specific competences in using programming languages but still, they do need to analyze data as a continuous process.
View Article and Find Full Text PDF