The local droplet etching (LDE) by using indium droplets on bare InP(100) surfaces is demonstrated in a metal-organic vapor phase epitaxy (MOVPE) environment for the first time. The role of an arsenic flow applied to self-assembled metallic indium droplets is systematically studied. Increasing the arsenic supply leads to the formation of ring-like nanostructures and nanoholes.
View Article and Find Full Text PDFWe present a detailed atomic-resolution study of morphology and substrate etching mechanism in InAs/InP droplet epitaxy quantum dots (QDs) grown by metal-organic vapor phase epitaxy via cross-sectional scanning tunneling microscopy (X-STM). Two different etching processes are observed depending on the crystallization temperature: local drilling and long-range etching. In local drilling occurring at temperatures of ≤500 °C, the In droplet locally liquefies the InP underneath and the P atoms can easily diffuse out of the droplet to the edges.
View Article and Find Full Text PDF