Publications by authors named "Elisa Leonardelli"

Our ability to understand and interact with our environment relies upon conceptual knowledge of the meaning of objects. This process is supported by a distributed network of frontal, parietal, and temporal brain regions. Insight into the differential roles of various elements of this system can be inferred from the timing of activation, and here we use similarity-based fMRI-MEG fusion to understand when the representational spaces in different elements of the semantic system converge with representational spaces in the evolving MEG signal.

View Article and Find Full Text PDF

The entwined nature of perceptual and conceptual processes renders an understanding of the interplay between perceptual recognition and conceptual access a continuing challenge. Here, to disentangle perceptual and conceptual processing in the brain, we combine magnetoencephalography (MEG), picture and word presentation and representational similarity analysis (RSA). We replicate previous findings of early and robust sensitivity to semantic distances between objects presented as pictures and show earlier (~105 ​msec), but not later, representations can be accounted for by contemporary computer models of visual similarity (AlexNet).

View Article and Find Full Text PDF

Categories describe semantic divisions between classes of objects and category-based models are widely used for investigation of the conceptual system. One critical issue in this endeavour is the isolation of conceptual from perceptual contributions to category-differences. An unambiguous way to address this confound is combining multiple input-modalities.

View Article and Find Full Text PDF

Successful lip-reading requires a mapping from visual to phonological information [1]. Recently, visual and motor cortices have been implicated in tracking lip movements (e.g.

View Article and Find Full Text PDF

To efficiently perceive and respond to the external environment, our brain has to perceptually integrate or segregate stimuli of different modalities. The temporal relationship between the different sensory modalities is therefore essential for the formation of different multisensory percepts. In this magnetoencephalography study, we created a paradigm where an audio and a tactile stimulus were presented by an ambiguous temporal relationship so that perception of physically identical audiotactile stimuli could vary between integrated (emanating from the same source) and segregated.

View Article and Find Full Text PDF

White matter thalamo-cortical fibers allow the communication of distant brain regions by carrying neuronal signals. Mapping non-invasively the information flow within white matter fibers is regarded so far as impossible. We investigated here whether information flow propagating along thalamo-cortical fibers can be detected using magnetoencephalography (MEG).

View Article and Find Full Text PDF