Publications by authors named "Elisa Lanfranchi"

Introduction: Human milk provides nutrients essential for infant growth and health, levels of which are dynamic during lactation.

Methods: In this study, changes in macronutrients, fatty acids, and plasmin activities over the first six months of lactation in term milk were studied.

Results: There was a significant influence of lactation stage on levels of protein and plasmin activities, but not on levels of fat and carbohydrate in term milk.

View Article and Find Full Text PDF

Human milk (HM) provides essential nutrition for ensuring optimal infant growth and development postpartum. Metabolomics offers insight into the dynamic composition of HM. Studies have reported the impact of lactation stage, maternal genotype, and gestational age on HM metabolome.

View Article and Find Full Text PDF

Transaminases are attractive catalysts for the production of enantiopure amines. However, the poor stability of these enzymes often limits their application in biocatalysis. Here, we used a framework for enzyme stability engineering by computational library design (FRESCO) to stabilize the homodimeric PLP fold type I ω-transaminase from .

View Article and Find Full Text PDF

The biodegradation of the nylon-6 precursor caprolactam by a strain of Pseudomonas jessenii proceeds via ATP-dependent hydrolytic ring opening to 6-aminohexanoate. This non-natural ω-amino acid is converted to 6-oxohexanoic acid by an aminotransferase (PjAT) belonging to the fold type I pyridoxal 5'-phosphate (PLP) enzymes. To understand the structural basis of 6-aminohexanoatate conversion, we solved different crystal structures and determined the substrate scope with a range of aliphatic and aromatic amines.

View Article and Find Full Text PDF

Biocatalytic dealkylation of aryl methyl ethers is an attractive reaction for valorization of lignin components, as well as for deprotection of hydroxy functionalities in synthetic chemistry. We explored the demethylation of various aryl methyl ethers by using an oxidative demethylase from Pseudomonas sp. HR199.

View Article and Find Full Text PDF

Hydroxynitrile lyase from the white rabbit's foot fern Davallia tyermannii (DtHNL) catalyzes the enantioselective synthesis of α-cyanohydrins, which are key building blocks for pharmaceutical and agrochemical industries. An efficient and competitive process necessitates the availability and robustness of the biocatalyst. Herein, the recombinant production of DtHNL1 in Komagataella phaffii, yielding approximately 900 000 U L , is described.

View Article and Find Full Text PDF

Homology and similarity based approaches are most widely used for the identification of new enzymes for biocatalysis. However, they are not suitable to find truly novel scaffolds with a desired function and this averts options and diversity. Hydroxynitrile lyases (HNLs) are an example of non-homologous isofunctional enzymes for the synthesis of chiral cyanohydrins.

View Article and Find Full Text PDF

Hydroxynitrile lyases (HNLs) catalyze the cleavage as well as the formation of cyanohydrins. The latter reaction is valuable for the stereoselective C-C bond formation by condensation of HCN with carbonyl compounds. The resulting cyanohydrins serve as versatile building blocks for a broad range of chemical and enzymatic follow-up reactions.

View Article and Find Full Text PDF