Publications by authors named "Elisa Jimenez Izal"

Recently, planar and neutral tricoordinated oxygen embedded in graphene has been imaged experimentally (, 2019, , 4570-4577). In this work, this unusual chemical species is studied utilizing a variety of state-of-the-art methods and combining periodic calculations with a fragmental approach. Several factors influencing the stability of trivalent oxygen are identified.

View Article and Find Full Text PDF

Low lying electronic states of Al, Ga, In, and Tl have been characterized using high level multiconfigurational quasi degenerate perturbation theory on the multiconfigurational self-consistent field. Among these species, the singlet states emerge as the predominant energy minima, displaying remarkable stability. However, within the Tl series, our investigation leads to the identification of the high-spin , as the most stable spin state, a result corroborated by previous experimental detection photoelectron spectroscopy.

View Article and Find Full Text PDF

The catalytic dehydrogenation of light alkanes is key to transform low-cost hydrocarbons to high value-added chemicals. Although Pt is extremely efficient at catalyzing this reaction, it suffers from coke formation that deactivates the catalyst. Dopants such as Sn are widely used to increase the stability and lifetime of Pt.

View Article and Find Full Text PDF

Recently, the edges of single-layer graphene have been experimentally doped with silicon atoms by means of scanning transmission electron microscopy. In this work, density functional theory is applied to model and characterize a wide range of experimentally inspired silicon doped zigzag-type graphene edges. The thermodynamic stability is assessed and the electronic and magnetic properties of the most relevant edge configurations are unveiled.

View Article and Find Full Text PDF

The high catalytic activity of Pt is accompanied by a high affinity for CO, making it extremely susceptible to poisoning. Such CO poisoning limits the use of proton exchange membrane fuel cells. In this work, using global minima search techniques and exhaustive electronic structure characterization, the dopant concentration is pinpointed as a crucial factor to improve the CO tolerance of Pt catalysts.

View Article and Find Full Text PDF

Plasmonic catalysis in the colloidal phase requires robust surface ligands that prevent particles from aggregation in adverse chemical environments and allow carrier flow from reagents to nanoparticles. This work describes the use of a water-soluble conjugated polymer comprising a thiophene moiety as a surface ligand for gold nanoparticles to create a hybrid system that, under the action of visible light, drives the conversion of the biorelevant NAD to its highly energetic reduced form NADH. A combination of advanced microscopy techniques and numerical simulations revealed that the robust metal-polymer heterojunction, rich in sulfonate functional groups, directs the interaction of electron-donor molecules with the plasmonic photocatalyst.

View Article and Find Full Text PDF

II-VI semiconducting materials are gaining attention due to their optoelectronic properties. Moreover, the addition of transition metals, TMs, might give them magnetic properties. The location and distance of the TM are crucial in determining such magnetic properties.

View Article and Find Full Text PDF

The vulnerability towards CO poisoning is a major drawback affecting the efficiency and long-term performance of platinum catalysts in fuel cells. In the present work, by a combination of density functional theory calculations and mass spectrometry experiments, we test and explain the promotional effect of Ge on Pt catalysts with higher resistance to deactivation via CO poisoning. A thorough exploration of the configurational space of gas-phase Pt and GePt (n=5-9) clusters using global minima search techniques and the subsequent electronic structure analysis reveals that germanium doping reduces the binding strength between Pt and CO by hindering the 2π-back-donation.

View Article and Find Full Text PDF

Partially oxidized surfaces of hexagonal boron nitride (hBN) and several metal borides are unexpectedly excellent catalysts for oxidative dehydrogenation of alkanes to olefins, but the nature of the active site(s) on these B-containing interfaces remains elusive. We characterize the surface of the partially oxidized B-rich hBN surface under reaction conditions from first principles. The interface has thermal access to multiple different stoichiometries and multiple structures of each stoichiometry.

View Article and Find Full Text PDF

Building materials from the atom up is the pinnacle of materials fabrication. Until recently the only platform that offered single-atom manipulation was scanning tunneling microscopy. Here controlled manipulation and assembly of a few atom structures are demonstrated by bringing together single atoms using a scanning transmission electron microscope.

View Article and Find Full Text PDF

When small clusters are studied in chemical physics or physical chemistry, one perhaps thinks of the fundamental aspects of cluster electronic structure, or precision spectroscopy in ultracold molecular beams. However, small clusters are also of interest in catalysis, where the cold ground state or an isolated cluster may not even be the right starting point. Instead, the big question is: What happens to cluster-based catalysts under real conditions of catalysis, such as high temperature and coverage with reagents? Myriads of metastable cluster states become accessible, the entire system is dynamic, and catalysis may be driven by rare sites present only under those conditions.

View Article and Find Full Text PDF

We use simple acid-base chemistry to control the valency in self-assembled monolayers of two different carboranedithiol isomers on Au{111}. Monolayer formation proceeds via Au-S bonding, where manipulation of pH prior to or during deposition enables the assembly of dithiolate species, monothiol/monothiolate species, or combination. Scanning tunneling microscopy (STM) images identify two distinct binding modes in each unmodified monolayer, where simultaneous spectroscopic imaging confirms different dipole offsets for each binding mode.

View Article and Find Full Text PDF

Two-dimensional (2D) phases of boron are rare and unique. Here we report a new 2D all-boron phase (named the π phase) that can be grown on a W(110) surface. The π phase, composed of four-membered rings and six-membered rings filled with an additional B atom, is predicted to be the most stable on this support.

View Article and Find Full Text PDF

Transition-metal hydrides represent a unique class of compounds, which are essential for catalysis, organic synthesis, and hydrogen storage. In this work we study IrH5(PPh3)2, (RuH5(P(i)Pr3)2)(-), (OsH5(P(i)Pr3)2)(-), and OsH4(PPhMe2)3 polyhydride complexes, inspired by the recent discovery of the σ-aromatic PtZnH5(-) cluster anion. The distinctive feature of these molecules is that, like in the PtZnH5(-) cluster, the metal is five-fold coordinated in-plane, and holds additional ligands at the axial positions.

View Article and Find Full Text PDF

ZnS and CdS small nanoclusters have been predicted to trap alkali metals and halogen atoms. However would this kind of nanocompounds be able to encapsulate dianions and dications? This would be very interesting from an experimental point of view, since it would allow the isolation of such divalent ions. Moreover, the resulting endohedral complexes would serve as building blocks for new cluster-assembled materials, with enhanced stability arising from the electrostatic interaction between the incarcerated ions.

View Article and Find Full Text PDF

The global minima of the cluster anions with the generic chemical formula (XAl₁₂)²⁻, where X = Be, Mg, Ca, Sr, Ba, and Zn, are determined by an extensive search of their potential energy surfaces using the Gradient Embedded Genetic Algorithm (GEGA). All the characterized global minima have an icosahedral-like structure, resembling that of the Al₁₃⁻ cluster. These cages comprise closed-shell electronic configurations with 40 electrons, therefore, in accordance to the jellium model, they are predicted to be highly stable and amenable to experimental detection.

View Article and Find Full Text PDF

The origin of the high directionality of halogen bonding was investigated quantum chemically by a detailed comparison of typical adducts in two different orientations: linear (most stable) and perpendicular. Energy decomposition analyses revealed that the synergy between charge-transfer interactions and Pauli repulsion are the driving forces for the directionality, while electrostatic contributions are more favourable in the less-stable, perpendicular orientation.

View Article and Find Full Text PDF

Unexpected trends in the strengths of halogen-bond based adducts of CY(3)I (Y = F, Cl, Br, I) with two typical Lewis bases (chloride and trimethylamine) show that the halogen-bond donor strength (Lewis acidity) of a compound R-X is not necessarily increased with higher electronegativity of the (carbon-based) group R.

View Article and Find Full Text PDF

Hollow CdS nanoclusters were predicted to trap alkali metals and halogen atoms inside their cavity. Furthermore, electron affinities (EA) of endohedrally halogen doped clusters and ionization potentials (IE) of endohedrally alkali doped clusters were predicted to be very similar. This makes them suitable to build cluster-assembled materials, in the same vein as do related ZnO, ZnS and MgO nanoclusters, which yield porous solid materials.

View Article and Find Full Text PDF