This study presents a comprehensive evaluation of catalytic ozonation as an effective strategy for indigo dye bleaching, particularly examining the performance of four carbon-based catalysts, activated carbon (AC), multi-walled carbon nanotubes (MWCNT), graphitic carbon nitride (g-CN), and thermally etched nanosheets (CN-TE). The study investigates the efficiency of catalytic ozonation in degrading Potassium indigotrisulfonate (ITS) dye within the constraints of short contact times, aiming to simulate real-world industrial wastewater treatment conditions. The results reveal that all catalysts demonstrated remarkable decolorization efficiency, with over 99% of indigo dye removed within just 120 s of mixing time.
View Article and Find Full Text PDFPlastics have become indispensable in modern society; however, the proliferation of their waste has become a problem that can no longer be ignored as most plastics are not biodegradable. Depolymerization/degradation through sustainable processes in the context of the circular economy are urgent issues. The presence of multiple types of plastic materials makes it necessary to study the specific characteristics of each material.
View Article and Find Full Text PDFA set of four composite materials was prepared, consisting of a nanosponge matrix based on β-cyclodextrin in which carbon nitride was dispersed. The materials were characterized by the presence of diverse cross-linker units joining the cyclodextrin moieties, in order to vary the absorption/release abilities of the matrix. The composites were characterized and used as photocatalysts in aqueous medium under UV, visible and natural solar irradiation for the photodegradation of 4-nitrophenol, and for the selective partial oxidation of 5-hydroxymethylfurfural and veratryl alcohol to the corresponding aldehydes.
View Article and Find Full Text PDFTwo sets of four different supported catalyst materials were prepared. One set was obtained by polymerization of a bis-vinylimidazolium salt, which formed a poly(ionic liquid) coating on SiO2, TiO2, boron nitride BN, and carbon nitride C3N4. The other set was, instead, obtained by immobilizing Keggin heteropolyacid H3PW12O40 onto poly-imidazolium functionalized materials.
View Article and Find Full Text PDFThe catalytic dehydration of fructose to 5-hydroxymethylfurfural (HMF) in water was performed in the presence of pristine NbO and composites containing Nb and Ti, Ce or Zr oxides. In all experiments, fructose was converted to HMF using water as the solvent. The catalysts were characterized by powder X-ray diffraction, scanning electron microscopy, N physical adsorption, infrared and Raman spectroscopy and temperature-programmed desorption of NH.
View Article and Find Full Text PDFMesoporous titania-organosilica nanoparticles comprised of anatase nanocrystals crosslinked with organosilica moieties have been prepared by direct co-condensation of a titania precursor, tetrabuthylortotitanate (TBOT), with two organosilica precursors, 1,4-bis(triethoxysilyl) benzene (BTEB) and 1,2-bis(triethoxysilyl) ethane (BTEE), in mild conditions and in the absence of surfactant. These hybrid materials show both high surface areas (200-360 m(2) g(-1) ) and pore volumes (0.3 cm(3) g(-1) ) even after calcination, and excellent photoactivity in the degradation of rhodamine 6G and in the partial oxidation of propene under UV irradiation, especially after the calcination of the samples.
View Article and Find Full Text PDFHeterogeneous photocatalysis is an advanced oxidation process which has been the subject of a huge amount of studies related to air cleaning and water purification. All these processes have been carried out mainly by using TiO(2)-based materials as the photocatalysts and ca. 75% of the articles published in the last 3 years is related to them.
View Article and Find Full Text PDFSelective photocatalytic conversions are offering an alternative green route for replacing environmentally hazardous processes with safe and energy efficient routes. This paper reports the most recent advances in the application of heterogeneous photocatalysis to synthesize valuable compounds by selective oxidation and reduction.
View Article and Find Full Text PDFCharacterization of polycrystalline TiO(2) bare or porphyrin impregnated powders, used as photocatalysts for the degradation of 4-nitrophenol (4-NP) in aqueous suspension, was performed by time-resolved microwave conductivity (TRMC) measurements and electronic paramagnetic resonance (EPR) and X-ray photoelectron (XPS) spectroscopies. The presence of porphyrin sensitizers, as the metal-free or Cu [5,10,15,20-tetra (4-tert-butylphenyl)] porphyrin, impregnated onto the TiO(2) surface improved the photocatalytic activity of the bare TiO(2). TRMC measurements indicate that the number and lifetime of the photoinduced excess charge carriers increase in the presence of the macrocycles, and EPR and XPS spectroscopies support the mechanistic hypotheses based on the photoreactivity experiments.
View Article and Find Full Text PDFExperimental results are reported showing that the photocatalytic oxidation of aromatic compounds containing an electron-donor group (EDG) gives rise mainly to ortho- and para-monohydroxy derivatives while in the presence of an electron-withdrawing group (EWG) all the monohydroxy derivatives are obtained.
View Article and Find Full Text PDFThe photocatalytic oxidation of methyl-orange (C14H14N3SO3Na) dye was carried out in aqueous suspensions of polycrystalline TiO2 irradiated with artificial light until its complete mineralization was achieved. The performances of two widely used semiconductor powders were studied for comparison purposes. The dependence of dye photo-oxidation rate on various experimental parameters, including substrate concentration, semiconductor amount, and pH was investigated by using both catalysts.
View Article and Find Full Text PDFThe photodegradation of two common and very stable azo-dyes, i.e. methyl-orange (C14H14N3SO3Na) and orange II (C16H11N2SO4Na), is reported.
View Article and Find Full Text PDFHeterogeneous photocatalytic oxidation of contaminants present in wastewater produced by a textile industry was carried out. The samples were withdrawn from the plant before and after a traditional biological treatment. The effluents were named A and A' (before the biological treatment), B and B' (after the biological treatment).
View Article and Find Full Text PDF