In mammalian cells, the catabolic activity of the dNTP triphosphohydrolase SAMHD1 sets the balance and concentration of the four dNTPs. Deficiency of SAMHD1 leads to unequally increased pools and marked dNTP imbalance. Imbalanced dNTP pools increase mutation frequency in cancer cells, but it is not known if the SAMHD1-induced dNTP imbalance favors accumulation of somatic mutations in non-transformed cells.
View Article and Find Full Text PDFis an opportunistic bacterial pathogen causing severe infections in hospitalized and immunosuppressed patients, particularly individuals affected by cystic fibrosis. Several clinically isolated strains were found to be resistant to three or more antimicrobial classes indicating the importance of identifying new antimicrobials active against this pathogen. Here, we characterized the antimicrobial activity and the action mechanisms against of two natural isoforms of the antimicrobial peptide cecropin B, both isolated from the silkworm .
View Article and Find Full Text PDFYAP/TAZ, downstream transducers of the Hippo pathway, are powerful regulators of cancer growth. How these factors control proliferation remains poorly defined. Here, we found that YAP/TAZ directly regulate expression of key enzymes involved in deoxynucleotide biosynthesis and maintain dNTP precursor pools in human cancer cells.
View Article and Find Full Text PDFTerminally differentiated cells are defined by their inability to proliferate. When forced to re-enter the cell cycle, they generally cannot undergo long-term replication. Our previous work with myotubes has shown that these cells fail to proliferate because of their intrinsic inability to complete DNA replication.
View Article and Find Full Text PDFThe dNTP triphosphohydrolase SAMHD1 is a nuclear antiviral host restriction factor limiting HIV-1 infection in macrophages and a major regulator of dNTP concentrations in human cells. In normal human fibroblasts its expression increases during quiescence, contributing to the small dNTP pool sizes of these cells. Down-regulation of SAMHD1 by siRNA expands all four dNTP pools, with dGTP undergoing the largest relative increase.
View Article and Find Full Text PDFThe CG18317 gene (drim2) is the Drosophila melanogaster homolog of the Saccharomyces cerevisiae Rim2 gene, which encodes a pyrimidine (deoxy)nucleotide carrier. Here, we tested if the drim2 gene also encodes for a deoxynucleotide transporter in the fruit fly. The protein was localized to mitochondria.
View Article and Find Full Text PDFSterile alpha motif and HD-domain containing protein 1 (SAMHD1) is a triphosphohydrolase converting deoxynucleoside triphosphates (dNTPs) to deoxynucleosides. The enzyme was recently identified as a component of the human innate immune system that restricts HIV-1 infection by removing dNTPs required for viral DNA synthesis. SAMHD1 has deep evolutionary roots and is ubiquitous in human organs.
View Article and Find Full Text PDFDuring myogenesis, myoblasts fuse into multinucleated myotubes that acquire the contractile fibrils and accessory structures typical of striated skeletal muscle fibers. To support the high energy requirements of muscle contraction, myogenesis entails an increase in mitochondrial (mt) mass with stimulation of mtDNA synthesis and consumption of DNA precursors (dNTPs). Myotubes are quiescent cells and as such down-regulate dNTP production despite a high demand for dNTPs.
View Article and Find Full Text PDFIn cycling cells cytosolic de novo synthesis of deoxynucleotides is the main source of precursors for mitochondrial (mt) DNA synthesis. The transfer of deoxynucleotides across the inner mt membrane requires protein carriers. PNC1, a SLC25 family member, exchanges pyrimidine nucleoside triphosphates in liposomes and its downregulation decreases mtUTP concentration in cultured cells.
View Article and Find Full Text PDFDeoxyribonucleoside triphosphates (dNTPs) are the precursors used by DNA polymerases for replication and repair of nuclear and mitochondrial DNA in animal cells. Accurate DNA synthesis requires adequate amounts of each dNTP and appropriately balanced dNTP pools. Total cellular pool sizes are in the range of 10-100pmoles of each dNTP/million cells during S phase, with mitochondrial pools representing at most 10% of the total.
View Article and Find Full Text PDFEukaryotic cells contain a delicate balance of minute amounts of the four deoxyribonucleoside triphosphates (dNTPs), sufficient only for a few minutes of DNA replication. Both a deficiency and a surplus of a single dNTP may result in increased mutation rates, faulty DNA repair or mitochondrial DNA depletion. dNTPs are usually quantified by an enzymatic assay in which incorporation of radioactive dATP (or radioactive dTTP in the assay for dATP) into specific synthetic oligonucleotides by a DNA polymerase is proportional to the concentration of the unknown dNTP.
View Article and Find Full Text PDFMitochondrial thymidine kinase (TK2) catalyzes the phosphorylation of thymidine in mitochondria. Its function becomes essential for dTTP synthesis in noncycling cells, where cytosolic dTTP synthesis via R1/R2 ribonucleotide reductase and thymidine kinase 1 is turned down. Mutations in the nuclear gene for TK2 cause a fatal mtDNA depletion syndrome.
View Article and Find Full Text PDFIn non-proliferating cells mitochondrial (mt) thymidine kinase (TK2) salvages thymidine derived from the extracellular milieu for the synthesis of mt dTTP. TK2 is a synthetic enzyme in a network of cytosolic and mt proteins with either synthetic or catabolic functions regulating the dTTP pool. In proliferating cultured cells the canonical cytosolic ribonucleotide reductase (R1-R2) is the prominent synthetic enzyme that by de novo synthesis provides most of dTTP for mt DNA replication.
View Article and Find Full Text PDFCellular models of mitochondrial thymidine kinase (TK2) deficiency require a reliable method to measure TK2 activity in whole cell extracts containing two interfering deoxyribonucleoside kinases, thymidine kinase 1 (TK1) and deoxycytidine kinase. We tested the value of the thymidine analog (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) as a TK2-specific substrate. With extracts of OSTTK1- cells containing TK2 as the only thymidine kinase and a highly specific TK2 inhibitor we established conditions to detect the low TK2 activity commonly present in cells.
View Article and Find Full Text PDF