Objectives: Bioreactor-based production systems have the potential to overcome limitations associated with conventional tissue engineering manufacturing methods, facilitating regulatory compliant and cost-effective production of engineered grafts for widespread clinical use. In this work, we established a bioreactor-based manufacturing system for the production of cartilage grafts.
Materials & Methods: All bioprocesses, from cartilage biopsy digestion through the generation of engineered grafts, were performed in our bioreactor-based manufacturing system.
Injured articular cartilage has a limited innate regenerative capacity, due to the avascular nature and low cellularity of the tissue itself. Although several approaches have been proposed to repair the joint cartilage, none of them has proven to be effective. The absence of suitable therapeutic options has encouraged tissue-engineering approaches combining specific cell types and biomaterials.
View Article and Find Full Text PDFTraumatic injury or surgical excision of diseased bone tissue usually require the reconstruction of large bone defects unable to heal spontaneously, especially in older individuals. This is a big challenge requiring the development of biomaterials mimicking the bone structure and capable of inducing the right commitment of cells seeded within the scaffold. In particular, given their properties and large availability, the human adipose-derived stem cells are considered as the better candidate for autologous cell transplantation.
View Article and Find Full Text PDFPurpose: Bone tissue engineering is helpful in finding alternatives to overcome surgery limitations. Bone growth and repair are under the control of biochemical and mechanical signals; therefore, in recent years several approaches to improve bone regeneration have been evaluated. Osteo-inductive biomaterials, stem cells, specific growth factors and biophysical stimuli are among those.
View Article and Find Full Text PDFRecently, multipotent mesenchymal stem cells (MSCs) have attracted much attention in the field of regenerative medicine due to their ability to give rise to different cell types, including chondrocytes. Damaged articular cartilage repair is one of the most challenging issues for regenerative medicine, due to the intrinsic limited capability of cartilage to heal because of its avascular nature. While surgical approaches like chondral autografts and allografts provide symptoms and function improvement only for a short period, MSC based stimulation therapies, like microfracture surgery or autologous matrix-induced chondrogenesis demonstrate to be more effective.
View Article and Find Full Text PDFThe bone grafting is the classical way to treat large bone defects. Among the available techniques, autologous bone grafting is still the most used but, however, it can cause complications such as infection and donor site morbidity. Alternative and innovative methods rely on the development of biomaterials mimicking the structure and properties of natural bone.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds.
View Article and Find Full Text PDFThe success of skeletal muscle reconstruction depends on finding the most effective, clinically suitable strategy to engineer myogenic cells and biocompatible scaffolds. Satellite cells (SCs), freshly isolated or transplanted within their niche, are presently considered the best source for muscle regeneration. Here, we designed and developed the delivery of either SCs or muscle progenitor cells (MPCs) via an in situ photo-cross-linkable hyaluronan-based hydrogel, hyaluronic acid-photoinitiator (HA-PI) complex.
View Article and Find Full Text PDFExogenous electric fields have been implied in cardiac differentiation of mouse embryonic stem cells and the generation of reactive oxygen species (ROS). In this work, we explored the effects of electrical field stimulation on ROS generation and cardiogenesis in embryoid bodies (EBs) derived from human embryonic stem cells (hESC, line H13), using a custom-built electrical stimulation bioreactor. Electrical properties of the bioreactor system were characterized by electrochemical impedance spectroscopy (EIS) and analysis of electrical currents.
View Article and Find Full Text PDFWe discuss the utilization of micro-bioreactor arrays for controlling cellular environments in studies of factors that regulate the differentiation of human embryonic stem cells. To this end, we have designed a simple and practical system that couples a microfluidic platform with an array of micro-bioreactors, and has the size of a microscope slide [E. Figallo, C.
View Article and Find Full Text PDFHeart disease is a leading cause of death in western society. Despite the success of heart transplantation, a chronic shortage of donor organs, along with the associated immunological complications of this approach, demands that alternative treatments be found. One such option is to repair, rather than replace, the heart with engineered cardiac tissue.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
March 2008
Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. The goal of this study was to assess the conditions of electrical stimulation with respect to the electrode geometry, material properties and charge-transfer characteristics at the electrode-electrolyte interface. We compared various biocompatible materials, including nanoporous carbon, stainless steel, titanium and titanium nitride, for use in cardiac tissue engineering bioreactors.
View Article and Find Full Text PDFHigh throughput experiments can be used to spatially and temporally investigate the many factors that regulate cell differentiation. We have developed a micro-bioreactor array (MBA) that is fabricated using soft lithography and contains twelve independent micro-bioreactors perfused with culture medium. The MBA enables cultivation of cells that are either attached to substrates or encapsulated in hydrogels, at variable levels of hydrodynamic shear, and with automated image analysis of the expression of cell differentiation markers.
View Article and Find Full Text PDFDuring in vivo tissue regeneration, cell behavior is highly influenced by the surrounding environment. Thus, the choice of scaffold material and its microstructure is one of the fundamental steps for a successful in vitro culture. An efficacious method for scaffold fabrication should prove its versatility and the possibility of controlling micro- and nanostructure.
View Article and Find Full Text PDF