Bioimage data are generated in diverse research fields throughout the life and biomedical sciences. Its potential for advancing scientific progress via modern, data-driven discovery approaches reaches beyond disciplinary borders. To fully exploit this potential, it is necessary to make bioimaging data, in general, multidimensional microscopy images and image series, FAIR, that is, findable, accessible, interoperable and reusable.
View Article and Find Full Text PDFIn the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security.
View Article and Find Full Text PDFThe correct inheritance of chromatin structure is key for maintaining genome function and cell identity and preventing cellular transformation. DEK, a conserved non-histone chromatin protein, has recognized tumor-promoting properties, its overexpression being associated with poor prognosis in various cancer types. At the cellular level, DEK displays pleiotropic functions, influencing differentiation, apoptosis and stemness, but a characteristic oncogenic mechanism has remained elusive.
View Article and Find Full Text PDFEpigenetic dysregulation of chromatin is one of the hallmarks of cancer development and progression, and it is continuously investigated as a potential general bio-marker of this complex disease. One of the nuclear factors involved in gene regulation is the unique DEK protein-a histone chaperon modulating chromatin topology. DEK expression levels increase significantly from normal to cancer cells, hence raising the possibility of using DEK as a tumor marker.
View Article and Find Full Text PDFHuman health is determined both by genetics (G) and environment (E). This is clearly illustrated in groups of individuals who are exposed to the same environmental factor showing differential responses. A quantitative measure of the gene-environment interactions (GxE) effects has not been developed and in some instances, a clear consensus on the concept has not even been reached; for example, whether cancer is predominantly emerging from "bad luck" or "bad lifestyle" is still debated.
View Article and Find Full Text PDF: Knowing the needs of the bioimaging community with respect to research data management (RDM) is essential for identifying measures that enable adoption of the FAIR (findable, accessible, interoperable, reusable) principles for microscopy and bioimage analysis data across disciplines. As an initiative within Germany's National Research Data Infrastructure, we conducted this community survey in summer 2021 to assess the state of the art of bioimaging RDM and the community needs. : An online survey was conducted with a mixed question-type design.
View Article and Find Full Text PDFThe DEK oncoprotein regulates cellular chromatin function via a number of protein-protein interactions. However, the biological relevance of its unique pseudo-SAP/SAP-box domain, which transmits DNA modulating activities in vitro, remains largely speculative. As hypothesis-driven mutations failed to yield DNA-binding null (DBN) mutants, we combined random mutagenesis with the Bacterial Growth Inhibition Screen (BGIS) to overcome this bottleneck.
View Article and Find Full Text PDFPoly(ADP-ribosyl)ation regulates numerous cellular processes like genome maintenance and cell death, thus providing protective functions but also contributing to several pathological conditions. Poly(ADP-ribose) (PAR) molecules exhibit a remarkable heterogeneity in chain lengths and branching frequencies, but the biological significance of this is basically unknown. To unravel structure-specific functions of PAR, we used PARP1 mutants producing PAR of different qualities, i.
View Article and Find Full Text PDFOperating shared resource laboratories (SRLs) in times of pandemic is a challenge for research institutions. In a multiuser, high-turnover working space, the transmission of infectious agents is difficult to control. To address this challenge, imaging core facility managers being members of German BioImaging discussed how shared microscopes could be operated with minimal risk of spreading SARS-CoV-2 between users and staff.
View Article and Find Full Text PDFDNA replication stress is a major source of genomic instability and is closely linked to tumor formation and progression. Poly(ADP-ribose)polymerases1/2 (PARP1/2) enzymes are activated in response to replication stress resulting in poly(ADP-ribose) (PAR) synthesis. PARylation plays an important role in the remodelling and repair of impaired replication forks, providing a rationale for targeting highly replicative cancer cells with PARP1/2 inhibitors.
View Article and Find Full Text PDFWe present a three-color femtosecond Er/Yb:fiber laser enabling highly specific and standardized nonlinear optical manipulation of live cells. The system simultaneously provides bandwidth-limited 80-fs pulses with identical intensity envelope centered at wavelengths of 515, 775, and 1035 nm in the focus of a confocal microscope. We achieve this goal by combining high-order dispersion control via, for example, chirped fiber Bragg gratings with proper bandwidth management in each nonlinear conversion step.
View Article and Find Full Text PDFThe post-translational modification poly(ADP-ribosyl)ation (PARylation) plays key roles in genome maintenance and transcription. Both non-covalent poly(ADP-ribose) binding and covalent PARylation control protein functions, however, it is unknown how the two modes of modification crosstalk mechanistically. Employing the tumor suppressor p53 as a model substrate, this study provides detailed insights into the interplay between non-covalent and covalent PARylation and unravels its functional significance in the regulation of p53.
View Article and Find Full Text PDFGenotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e.
View Article and Find Full Text PDFPoly(ADP-ribos)ylation (PARylation) is an important posttranslational protein modification, and is involved in major cellular processes such as gene regulation and DNA repair. Its dysregulation has been linked to several diseases, including cancer. Despite its importance, methods to observe PARylation dynamics within cells are rare.
View Article and Find Full Text PDFCore Facilities (CF) for advanced light microscopy (ALM) have become indispensable support units for research in the life sciences. Their organizational structure and technical characteristics are quite diverse, although the tasks they pursue and the services they offer are similar. Therefore, throughout Europe, scientists from ALM-CFs are forming networks to promote interactions and discuss best practice models.
View Article and Find Full Text PDFEnvironmental signals can be translated into chromatin changes, which alter gene expression. Here we report a novel concept that cells can signal chromatin damage from the nucleus back to the surrounding tissue through the cytokine interleukin-1alpha (IL-1α). Thus, in addition to its role as a danger signal, which occurs when the cytokine is passively released by cell necrosis, IL-1α could directly sense DNA damage and act as signal for genotoxic stress without loss of cell integrity.
View Article and Find Full Text PDFBackground: Protein function in eukaryotic cells is often controlled in a cell cycle-dependent manner. Therefore, the correct assignment of cellular phenotypes to cell cycle phases is a crucial task in cell biology research. Nuclear proteins whose localization varies during the cell cycle are valuable and frequently used markers of cell cycle progression.
View Article and Find Full Text PDFPoly(ADP-ribose) (PAR) is a complex and reversible post-translational modification that controls protein function and localization through covalent modification of, or noncovalent binding to target proteins. Previously, we and others characterized the noncovalent, high-affinity binding of the key nucleotide excision repair (NER) protein XPA to PAR. In the present study, we address the functional relevance of this interaction.
View Article and Find Full Text PDFADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) is localized in the nucleus, where it ADP-ribosylates specific target proteins. The post-translational modification (PTM) with a single ADP-ribose unit or with polymeric ADP-ribose (PAR) chains regulates protein function as well as protein-protein interactions and is implicated in many biological processes and diseases. SET7/9 (Setd7, KMT7) is a protein methyltransferase that catalyses lysine monomethylation of histones, but also methylates many non-histone target proteins such as p53 or DNMT1.
View Article and Find Full Text PDFOur understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions.
View Article and Find Full Text PDFCentrosomes, the principal microtubule-organising centres in animal cells, contain centrins, small, conserved calcium-binding proteins unique to eukaryotes. Centrin2 binds to xeroderma pigmentosum group C protein (XPC), stabilising it, and its presence slightly increases nucleotide excision repair (NER) activity in vitro. In previous work, we deleted all three centrin isoforms present in chicken DT40 cells and observed delayed repair of UV-induced DNA lesions, but no centrosome abnormalities.
View Article and Find Full Text PDFDEK is a biochemically distinct, conserved nonhistone protein that is vital to global heterochromatin integrity. In addition, DEK can be secreted and function as a chemotactic, proinflammatory factor. Here we show that exogenous DEK can penetrate cells, translocate to the nucleus, and there carry out its endogenous nuclear functions.
View Article and Find Full Text PDFBax and Bak (Bax/Bak) are essential pro-apoptotic proteins of the Bcl-2 family that trigger mitochondrial outer membrane permeabilization (MOMP) in a Bcl-2/Bcl-xL-inhibitable manner. We recently discovered a new stress-related function for Bax/Bak-regulation of nuclear protein redistribution (NPR) from the nucleus to cytoplasm. This effect was independent of Bax/Bak N-terminus exposure and not inhibited by Bcl-xL over-expression.
View Article and Find Full Text PDF