Dendrimers are efficient drug delivery systems particularly useful in ocular diseases. In particular, low generation PAMAM dendrimers are non-toxic and non-immunogenic and they provide an enhancement of the residence time of drugs in the eyes. In this context, the synthesis of the PAMAM-based matrix metalloproteinases inhibitor 5, is reported.
View Article and Find Full Text PDFThe design and synthesis of the Ln complexes of a DOTA-containing (DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) inhibitor of matrix metalloproteinases are reported. The tight binding of the sulfonamide scaffold to the catalytic domain of the investigated matrix metalloproteinase is not impaired by the presence of the Ln -DOTA moiety. The paramagnetic properties of the Ln complex are exploited to obtain insights into the structural features of the ligand-protein interactions and to evaluate the influence of the linker length on the quality of the paramagnetic restraints.
View Article and Find Full Text PDFNeuropathic pain (NeP) is generally considered an intractable problem, which becomes compelling in clinical practice when caused by highly effective chemotherapeutics, such as in the treatment of cancer with oxaliplatin (OXA) and related drugs. In the present work we describe a structurally new compound, ADM_09, which proved to effectively revert OXA-induced NeP in vivo in rats without eliciting the commonly observed negative side-effects. ADM_09 does not modify normal behavior in rats, does not show any toxicity toward astrocyte cell cultures, nor any significant cardiotoxicity.
View Article and Find Full Text PDFA new strategy to exploit galectin presence to target matrix metalloproteinases (MMPs) is presented. A bifunctional conjugate with lactose and an inhibitor for MMPs is able to bind MMP and Gal-3 simultaneously. This compound might allow the lectin to attract the MMP inhibitor to the tumour site and to block protumoural activities of the lectin at the same time.
View Article and Find Full Text PDFN-arylsulfonyl-based MMPs inhibitors (MMPIs) are among the most prominent inhibitors possessing nanomolar affinity. However, their poor bioavailability remains critical for the drug development of this family of molecules. The structural analysis of the complex of NNGH (the most representative member of the family) with MMP-12 provided us with the basis to effectively design simple NNGH analogues with enhanced solubility in water.
View Article and Find Full Text PDFEfficient cycloaddition of a silylidene-protected galactal with a suitable heterodiene yielded the basis for a facile diastereoselective route to a glycopeptide-mimetic scaffold. Its carbohydrate part was further extended by beta1-3-linked galactosylation. The pyranose rings retain their (4)C(1) chair conformation, as shown by molecular modeling and NMR spectroscopy, and the typical exo-anomeric geometry was observed for the disaccharide.
View Article and Find Full Text PDFCyclic peptidomimetics are attracting structures to obtain a distinct, bioactive conformation. Even more attractive are sugar-containing cyclic peptidomimetics which present turn structures induced by the pyranose ring when incorporated in cyclic peptides. The use of a new and versatile saccharidic scaffold to achieve sugar-based peptidomimetics is here reported together with the successful synthesis of diastereomerically pure cyclic SAA peptidomimetics 15 and 16.
View Article and Find Full Text PDFThe design and synthesis of biotin chain-terminated inhibitors (BTI) showing high affinity for matrix metalloproteinases (MMPs) on one side and high affinity for avidin through the biotinylated tag on the other are reported. The affinity of the designed BTI toward five different MMPs has been evaluated and the simultaneous formation of a highly stable ternary system Avidin-BTI-MMP clearly assessed. This system will permit the development of new approaches to detect, quantify, or collect MMPs in biological samples, with potential applications in vivo.
View Article and Find Full Text PDF