When antimicrobial resistant bacteria (ARB) and genes (ARGs) reach novel habitats, they can become part of the habitat's microbiome in the long term if they are able to overcome the habitat's biotic resilience towards immigration. This process should become more difficult with increasing biodiversity, as exploitable niches in a given habitat are reduced for immigrants when more diverse competitors are present. Consequently, microbial diversity could provide a natural barrier towards antimicrobial resistance by reducing the persistence time of immigrating ARB and ARG.
View Article and Find Full Text PDFMicroorganisms able to form biofilms in marine ecosystems are selected depending on immersed surfaces and environmental conditions. Cell attachment directly on toxic surfaces like antifouling coatings suggests a selection of tolerant (or resistant) organisms with characteristics conferring adaptive advantages. We investigated if environment would drive metal resistance gene abundance in biofilms on artificial surfaces.
View Article and Find Full Text PDFWhile marine biofilms depend on environmental conditions and substrate, little is known about the influence of hydrodynamic forces. We tested different immersion modes (dynamic, cyclic and static) in Toulon Bay (north-western Mediterranean Sea; NWMS). The static mode was also compared between Toulon and Banyuls Bays.
View Article and Find Full Text PDFLow nitrification rates in Brazilian savanna (Cerrado) soils have puzzled researchers for decades. Potential mechanisms include biological inhibitors, low pH, low microbial abundance and low soil moisture content, which hinders microbial activity, including ammonia oxidation. Two approaches were used to evaluate these potential mechanisms: (i) manipulation of soil moisture and pH in microcosms containing Cerrado soil and (ii) assessment of nitrification inhibition in slurries containing mixtures of Cerrado soil and an actively nitrifying agricultural soil.
View Article and Find Full Text PDFIn recent years, archaeal diversity surveys have received increasing attention. Brazil is a country known for its natural diversity and variety of biomes, which makes it an interesting sampling site for such studies. However, archaeal communities in natural and impacted Brazilian environments have only recently been investigated.
View Article and Find Full Text PDFThe Caatinga is a semi-arid biome in northeast Brazil. The Paraguaçú River is located in the Caatinga biome, and part of its course is protected by the National Park of Chapada Diamantina (PNCD). In this study we evaluated the effect of PNCD protection on the water quality and microbial community diversity of this river by analyzing water samples obtained from points located inside and outside the PNCD in both wet and dry seasons.
View Article and Find Full Text PDFMicrob Ecol
August 2015
The gut microbiota of termites allows them to thrive on a variety of different materials such as wood, litter, and soil. For that reason, they play important roles in the decomposition of biomass in diverse biomes. This function is essential in the savanna, where litter-feeding termites are one of the few invertebrates active during the dry season.
View Article and Find Full Text PDF16S rRNA sequences from the phylum Acidobacteria have been commonly reported from soil microbial communities, including those from the Brazilian Savanna (Cerrado) and the Atlantic Forest biomes, two biomes that present contrasting characteristics of soil and vegetation. Using 16S rRNA sequences, the present work aimed to study acidobacterial diversity and distribution in soils of Cerrado savanna and two Atlantic forest sites. PCA and phylogenetic reconstruction showed that the acidobacterial communities found in "Mata de galeria" forest soil samples from the Cerrado biome have a tendency to separate from the other Cerrado vegetation microbial communities in the direction of those found in the Atlantic Forest, which is correlated with a high abundance of Acidobacteria subgroup 2 (GP2).
View Article and Find Full Text PDFThe Cerrado is a biome that corresponds to 24% of Brazil's territory. Only recently microbial communities of this biome have been investigated. Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the dry and rainy seasons, when the first rains occur.
View Article and Find Full Text PDF