Background: Malignant pleural mesothelioma is an aggressive cancer, characterized by rapid progression and high mortality. Persistence of tumor-initiating cells (TICs, or cancer stem cells) after cytotoxic drug treatment is responsible for tumor relapse, and represents one of the main reasons for the poor prognosis of mesothelioma. In fact, identification of the molecules affecting TIC viability is still a significant challenge.
View Article and Find Full Text PDFNotwithstanding current multimodal treatment, including surgery, radiotherapy and chemotherapy with temozolomide (TMZ), median survival of glioblastoma (GBM) patients is about 14 months, due to the rapid emergence of cell clones resistant to treatment. Therefore, understanding the mechanisms underlying chemoresistance is mandatory to improve treatments' outcome. We generated TMZ resistant cells (TMZ-R) from a GBM cell line and from cancer stem cell-enriched cultures isolated from human GBMs.
View Article and Find Full Text PDFBackground: Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal.
View Article and Find Full Text PDFEpidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells.
View Article and Find Full Text PDFWe have recently reported that glioblastoma (GB)-initiating cells (GIC) with low expression and/or mutation of TP53 and high expression of PI3K ("responder" genetic profile) can be effectively and safely radiosensitized by the ATM inhibitor KU60019. We report here on drug's diffusion and elimination from the animal body and brain, its effects on orthotopic GB and efficacy toward pediatric GIC. Healthy mice were infused by convection enhanced delivery (CED) with KU60019 and the drug kinetics followed by high performance liquid chromatography-mass spectrometry.
View Article and Find Full Text PDFReactive oxygen species (ROS) are metabolism by-products that may act as signaling molecules to sustain tumor growth. Antioxidants have been used to impair cancer cell survival. Our goal was to determine the mechanisms involved in the response to antioxidants of a human cell culture (PT4) containing glioblastoma (GBM) tumorigenic initiating cells (TICs).
View Article and Find Full Text PDFWe have previously shown that pharmacological inhibition of ataxia telangiectasia mutated (ATM) protein sensitizes glioblastoma-initiating cells (GICs) to ionizing radiation (IR). Herein, we report the experimental conditions to overcome GIC radioresistance in vitro using the specific ATM inhibitor KU-60019, two major determinants of the tumor response to this drug and the absence of toxicity of this treatment in vitro and in vivo. Repeated treatments with KU-60019 followed by IR substantially delayed GIC proliferation in vitro and even eradicated radioresistant cells, whereas GIC treated with vehicle plus radiation recovered early and expanded.
View Article and Find Full Text PDFGlioblastomas are grade IV brain tumors characterized by high aggressiveness and invasiveness, giving patients a poor prognosis. We investigated the effects of the multi-kinase inhibitor sorafenib on six cultures isolated from human glioblastomas and maintained in tumor initiating cells-enriching conditions. These cell subpopulations are thought to be responsible for tumor recurrence and radio- and chemo-resistance, representing the perfect target for glioblastoma therapy.
View Article and Find Full Text PDF