Publications by authors named "Elisa Calabria"

Type 2 diabetes (T2D) is a multisystem disease that is the subject of many studies, but the earliest cause of the disease has yet to be elucidated. Mitochondrial impairment has been associated with diabetes in several tissues. To extend the association between T2D and mitochondrial impairment to blood cells, we investigated T2D-related changes in peripheral mononucleated blood cells’ (PBMCs) mitochondrial function in two groups of women (CTRL vs.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how mechanoreflex activation and pain perception affect blood flow and heart function during leg movement after exercise-induced muscle damage (EIMD).
  • Eight young males participated in sessions where one leg underwent passive movement while the other was either resting, stretched, had delayed onset muscle soreness (DOMS), or stretched after DOMS.
  • Results showed that combining mechanoreflex and pain led to increased heart metrics while reducing blood flow to the affected limb, indicating a shift in the body’s response to pain during exercise.
View Article and Find Full Text PDF

Human blood cells may offer a minimally invasive strategy to study systemic alterations of mitochondrial function. Here we tested the reliability of a protocol designed to study mitochondrial respiratory control in human platelets (PLTs) in field studies, using high-resolution respirometry (HRR). Several factors may trigger PLT aggregation during the assay, altering the homogeneity of the cell suspension and distorting the number of cells added to the two chambers (A, B) of the Oroboros Oxygraph-2k (O2k).

View Article and Find Full Text PDF

Dysregulated immunity and widespread metabolic dysfunctions are the most relevant hallmarks of the passing of time over the course of adult life, and their combination at midlife is strongly related to increased vulnerability to diseases; however, the causal connection between them remains largely unclear. By combining multi-omics and functional analyses of adipose-derived stromal cells established from young (1 month) and midlife (12 months) mice, we show that an increase in expression of interferon regulatory factor 7 (IRF7) during adult life drives major metabolic changes, which include impaired mitochondrial function, altered amino acid biogenesis and reduced expression of genes involved in branched-chain amino acid (BCAA) degradation. Our results draw a new paradigm of aging as the 'sterile' activation of a cell-autonomous pathway of self-defense and identify a crucial mediator of this pathway, IRF7, as driver of metabolic dysfunction with age.

View Article and Find Full Text PDF

Only a few studies have evaluated changes in mitochondrial function and oxidative stress associated with ultramarathon running. Invasive biopsies are needed to assess mitochondrial function of skeletal muscle, which may not be well tolerated by some individuals. Platelets (PLTs) as a metabolically highly active and homogenous cell population were suggested as a potentially valuable surrogate to investigate mitochondrial function.

View Article and Find Full Text PDF

Background: Exercise has beneficial effects on older adults, but controversy surrounds the purported "compensatory effects" that training may have on total daily physical activity and energy expenditure in the elderly. We wanted to determine whether 8 weeks of high-intensity interval training (HIIT) induced such effects on physical activity and energy expenditure in healthy, active older adult men.

Methods: Twenty-four healthy elderly male volunteers were randomized to two groups.

View Article and Find Full Text PDF

Ultramarathon running represents a major physical challenge even for elite athletes. Runners wellbeing may be challenged by fluid and electrolyte disturbances, hemolysis and skeletal muscle damage, decline in hepatic function and kidney injury. We hypothesized that these effects may even be exacerbated in non-elite runners.

View Article and Find Full Text PDF

The amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motoneurons death. Mutations in the superoxide dismutase 1 (SOD1) protein have been identified to be related to the disease. Beyond the different altered pathways, the mitochondrial dysfunction is one of the major features that leads to the selective death of motoneurons in ALS.

View Article and Find Full Text PDF

We compared the effects of aerobic high-intensity training () and isoinertial resistance training () on the strength, mass, architecture, intermuscular adipose tissue () quality, and neuromuscular activation of the quadriceps in elderly subjects. Twelve healthy men (69.3 ± 4.

View Article and Find Full Text PDF

Mitochondrial encephalomyopathy, lactic acidosis, and recurrent stroke-like episodes syndrome (MELAS) is a rare degenerative disease. Recent studies have shown that resistant training (RT) can ameliorate muscular force in mitochondrial diseases. However, the effects of RT in MELAS are unknown.

View Article and Find Full Text PDF

We compared the effects of 8 weeks of high intensity, aerobic interval training ( and isoinertial resistance training ( on: (i) kinetics during heavy () intensity exercise and; (ii) work economy during moderate () intensity exercise in 12 healthy elderly men (69.3 ± 4.2 years).

View Article and Find Full Text PDF

Purpose Of Review: The review is focused on the unexpected role of myogenic regulatory factor 4 (MRF4) in controlling muscle mass by repressing myocyte enhancer binding factor 2 (MEF2) activity in adult skeletal muscle, and on the emerging role of MEF2 in skeletal muscle growth.

Recent Findings: The MRF4s of the MyoD family (MyoD, MYF5, MRF4, myogenin) and the MEF2 factors are known to play a major role in embryonic myogenesis. However, their function in adult muscle tissue is not known.

View Article and Find Full Text PDF

The availability of reliable biomarkers of aging is important not only to monitor the effect of interventions and predict the timing of pathologies associated with aging but also to understand the mechanisms and devise appropriate countermeasures. Blood cells provide an easily available tissue and gene expression profiles from whole blood samples appear to mirror disease states and some aspects of the aging process itself. We report here a microarray analysis of whole blood samples from two cohorts of healthy adult and elderly subjects, aged 43±3 and 68±4 years, respectively, to monitor gene expression changes in the initial phase of the senescence process.

View Article and Find Full Text PDF

The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors.

View Article and Find Full Text PDF

We investigated the effect of 8 weeks of high intensity interval training (HIT) and isoinertial resistance training (IRT) on cardiovascular fitness, muscle mass-strength and risk factors of metabolic syndrome in 12 healthy older adults (68 yy ± 4). HIT consisted in 7 two-minute repetitions at 80%-90% of V˙O2max, 3 times/w. After 4 months of recovery, subjects were treated with IRT, which included 4 sets of 7 maximal, bilateral knee extensions/flexions 3 times/w on a leg-press flywheel ergometer.

View Article and Find Full Text PDF

The effect of a prolonged running trial on the energy cost of running (C(r)) during a 60-km ultramarathon simulation at the pace of a 100-km competition was investigated in 13 men (40.8 ± 5.6 y, 70.

View Article and Find Full Text PDF

Purpose: We tested the hypothesis that the maximal lactate steady state (MLSS) can be accurately determined in healthy subjects based on measures of deoxygenated hemoglobin (deoxyHb), an index of oxygen extraction measured noninvasively by near-infrared spectroscopy (NIRS).

Methods: Thirty-two healthy men (mean ± SD age = 48 ± 17 yr, range = 23-74 yr) performed an incremental cycling test to exhaustion and square wave tests for MLSS determination. Cardiorespiratory variables were measured bbb and deoxyHb was monitored noninvasively on the right vastus lateralis with a quantitative NIRS device.

View Article and Find Full Text PDF

The intracellular signals that convert fast and slow motor neuron activity into muscle fiber type specific transcriptional programs have only been partially defined. The calcium/calmodulin-dependent phosphatase calcineurin (Cn) has been shown to mediate the transcriptional effects of motor neuron activity, but precisely how 4 distinct muscle fiber types are composed and maintained in response to activity is largely unknown. Here, we show that 4 nuclear factor of activated T cell (NFAT) family members act coordinately downstream of Cn in the specification of muscle fiber types.

View Article and Find Full Text PDF

The leucine-rich, glioma inactivated 1 (LGI1)/Epitempin gene has been linked to two phenotypes as different as gliomagenesis and autosomal dominant lateral temporal epilepsy. Its function and the biochemical features of the encoded protein are unknown. We characterized the LGI1/Epitempin protein product by western blot analysis of mouse and human brain tissues.

View Article and Find Full Text PDF

Calcineurin (Cn) signaling has been implicated in nerve activity-dependent fiber type specification in skeletal muscle, but the downstream effector pathway has not been established. We have investigated the role of the transcription factor nuclear factor of activated T cells (NFAT), a major target of Cn, by using an in vivo transfection approach in regenerating and adult rat muscles. NFAT transcriptional activity was monitored with two different NFAT-dependent reporters and was found to be higher in slow compared to fast muscles.

View Article and Find Full Text PDF

Skeletal muscle atrophy is a debilitating response to fasting, disuse, cancer, and other systemic diseases. In atrophying muscles, the ubiquitin ligase, atrogin-1 (MAFbx), is dramatically induced, and this response is necessary for rapid atrophy. Here, we show that in cultured myotubes undergoing atrophy, the activity of the PI3K/AKT pathway decreases, leading to activation of Foxo transcription factors and atrogin-1 induction.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is the most common birth defect in humans and is present in 40% of newborns affected by Down syndrome (DS). The SH3BGR gene maps to the DS-CHD region and is a potential candidate for the pathogenesis of CHD, since it is selectively expressed in cardiac and skeletal muscle. To determine whether overexpression of Sh3bgr in the murine heart may cause abnormal cardiac development, we have generated transgenic mice using a cardiac- and skeletal-muscle-specific promoter to drive the expression of a Sh3bgr transgene.

View Article and Find Full Text PDF

Nerve activity controls fiber size and fiber type in skeletal muscle, but the underlying molecular mechanisms remain largely unknown. We have previously shown that Ras-mitogen-activated protein kinase and calcineurin control fiber type but not fiber size in regenerating rat skeletal muscle. Here we report that constitutively active protein kinase B (PKB), also known as Akt, increases fiber size and prevents denervation atrophy in regenerating and adult rat muscles but does not affect fiber type profile.

View Article and Find Full Text PDF