Publications by authors named "Elisa C Martinez"

T cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs).

View Article and Find Full Text PDF

T cell development is predicated on the successful rearrangement of the TCR gene loci, which encode for Ag-specific receptors. Recombination-activating gene (RAG) 2 is required for TCR gene rearrangements, which occur during specific stages of T cell development. In this study, we differentiated human pluripotent stem cells with a CRISPR/Cas9-directed deletion of the gene (RAG2-KO) to elucidate the requirement for the TCR β-chain in mediating β-selection during human T cell development.

View Article and Find Full Text PDF

Although synthetic CpG oligodeoxynucleotides (ODNs) have shown substantial potential as immunotherapeutic agents, their effective intracellular delivery remains challenging. In this work, nanoparticles prepared from low-molecular weight (LMW) chitosans were investigated as CpG ODN delivery systems. Chitosan samples with a molecular weight (M) of 5 and 15 kDa and degree of deacetylation (DDA) of 50 and 80% were prepared.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSC) derived from healthy individuals are important controls for disease-modeling studies. Here we apply precision health to create a high-quality resource of control iPSCs. Footprint-free lines were reprogrammed from four volunteers of the Personal Genome Project Canada (PGPC).

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is responsible for a large proportion of acute lower respiratory tract infections, specifically in children. Pneumonia virus of mice (PVM) causes similar lung pathology and clinical disease in rodents, and is therefore an appropriate model of RSV infection. Previously, we demonstrated that a single intranasal dose of P-I-P, a novel immunomodulator composed of the toll-like receptor 3 agonist poly(I:C), an innate defense regulator peptide and a polyphosphazene, confers protection in Balb/c mice for up to 3 days from lethal PVM-15 infection.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in infants and young children. There are no licensed RSV vaccines available, and the few treatment options for high-risk individuals are either extremely costly or cause severe side effects and toxicity. Immunomodulation mediated by a novel formulation consisting of the toll-like receptor 3 agonist poly(I:C), an innate defense regulator peptide and a polyphosphazene (P-I-P) was evaluated in the context of lethal infection with pneumonia virus of mice (PVM).

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) causes serious respiratory illness in infants and elderly. RSV infection induces short-lived immunity, which leaves people prone to re-infection. In contrast, the RSV fusion (F) protein formulated with a novel adjuvant (∆F/TriAdj) elicits long term protective immunity.

View Article and Find Full Text PDF