Purpose: The area under the receiver operating characteristic curve (AUC) is commonly used for evaluating the improvement of polygenic risk models and increasingly assessed together with the net reclassification improvement (NRI) and integrated discrimination improvement (IDI). We evaluated how researchers described and interpreted AUC, NRI, and IDI when simultaneously assessed.
Methods: We reviewed how researchers described definitions of AUC, NRI, and IDI and how they computed each metric.
Objective: Adding risk factors to a prediction model often increases the area under the receiver operating characteristic curve (AUC) only slightly, particularly when the AUC of the model was already high. We investigated whether a risk factor that minimally improves the AUC may nevertheless improve the predictive ability of the model, assessed by integrated discrimination improvement (IDI).
Study Design And Setting: We simulated data sets with risk factors and event status for 100,000 hypothetical individuals and created prediction models with AUCs between 0.
The current risk assessment of compounds is generally based on external exposure and effect relationships. External doses are often not representative for internal exposure concentrations. The aim of this study was to show how the implementation of toxicokinetics in a scheduled toxicity study contributes to improved data interpretation without additional use of animals and to the three goals of the 3R principles for animal testing.
View Article and Find Full Text PDFThe developmental immunotoxicity of 4-methyl anisole (4MA) was investigated in the rat. Four study designs were used, with either premating or post-weaning onset of exposure, continued to postnatal day 50, and with or without additional oral gavage of pups from postnatal day 10 onward. Reduced litter size (benchmark dose lower confidence limit (BMDL) 80mg/kg bw/day) was the most sensitive developmental parameter, with pup relative organ weight effects observed at similar BMDLs, in the absence of maternal toxicity.
View Article and Find Full Text PDFDevelopmental toxicity can be caused through a multitude of mechanisms and can therefore not be captured through a single simple mechanistic paradigm. However, it may be possible to define a selected group of overarching mechanisms that might allow detection of the vast majority of developmental toxicants. Against this background, we have explored the usefulness of retinoic acid mediated regulation of neural tube and axial patterning as a general mechanism that, when perturbed, may result in manifestations of developmental toxicity that may cover a large part of malformations known to occur in experimental animals and in man.
View Article and Find Full Text PDFAround 25% of the children in developed countries are affected with immune-based diseases. Juvenile onset diseases such as allergic, inflammatory and autoimmune diseases have shown increasing prevalences in the last decades. The role of chemical exposures in these phenomena is unclear.
View Article and Find Full Text PDFThe embryonic stem cell test (EST) is applied as a model system for detection of embryotoxicants. The application of transcriptomics allows a more detailed effect assessment compared to the morphological endpoint. Genes involved in cell differentiation, modulated by chemical exposures, may be useful as biomarkers of developmental toxicity.
View Article and Find Full Text PDFTranscriptomic evaluations may improve toxicity prediction of in vitro-based developmental models. In this study, transcriptomics was used to identify VPA-induced gene expression changes in rat whole embryo culture (WEC). Furthermore, VPA-induced responses were compared across in vitro-based developmental models, such as the cardiac and neural embryonic stem cells (ESTc and ESTn, respectively) and the zebrafish embryotoxicity model.
View Article and Find Full Text PDFThe aim of the present study was to determine the sensitivity of the developing immune system to ethanol (EtOH) after exposure from postnatal day (PND) 10 onward. Adult Wistar dams and litters were exposed to EtOH via drinking water (0, 0.25, 1.
View Article and Find Full Text PDFThe susceptibility of developing immune system to chemical disruption warrants the assessment of immune parameters in reproductive and developmental testing protocols. In this study, a wide range of immune endpoints was included in an extended one-generation reproduction toxicity study (EOGRTS) design to determine the relative sensitivity of immune and developmental parameters to ethanol (EtOH), a well-known developmental toxicant with immunomodulatory properties. Adult Wistar rats were exposed to EtOH via drinking water (0, 1.
View Article and Find Full Text PDFCommonly used as antifungal agents in agriculture and medicine, triazoles have been shown to cause teratogenicity in a diverse set of animal models. Here, we evaluated the dose-dependent impacts of flusilazole, cyproconazole and triadimefon, on global gene expression in relation to effects on embryonic development using the rat whole embryo culture (WEC) model. After 4 h exposure, we identified changes in gene expression due to triazole exposure which preceded morphological alterations observed at 48 h.
View Article and Find Full Text PDFThere is increased awareness of the specific position of children when it comes to hazards of xenobiotic exposures. Children are not small adults, since their exposure patterns, compound kinetics and metabolism, and sensitivity of their developing organs may differ extensively from adults. Current international hazard assessment test guidelines do not specifically address juvenile exposures and effects.
View Article and Find Full Text PDFThe developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation.
View Article and Find Full Text PDFTo determine relevant endpoints for evaluating developmental immunotoxicity due to juvenile exposure and optimal age of the animals at assessment, a wide range of immunological parameters were assessed in a juvenile toxicity study. Rats were exposed to di-n-octyltin dichloride (DOTC) by gavage from postnatal day (PND) 10 through PND 21 and via the diet after weaning using a benchmark dose (BMD) approach. Immune assessments were performed in male rats on PNDs 21, 42, and 70 and a subset of animals was used to evaluate the T-cell dependent antibody response (TDAR) to Keyhole limpet hemocyanin.
View Article and Find Full Text PDFDevelopmental immunotoxicity assessment is considered ready for inclusion in developmental toxicity studies. Further evaluation of proposed and additional assays is needed to determine their utility in assessing developmental immunotoxicity. In this study, a wide range of immunological parameters was included in an extended one-generation reproductive toxicity protocol.
View Article and Find Full Text PDFCurrent developmental and reproductive toxicity protocols include only a limited set of parameters for effects on the developing immune system. In this study, a wide range of immunological parameters were included in a pre- and postnatal developmental toxicity study. Dose-response data were compared to determine the relative sensitivity of different immune and developmental parameters.
View Article and Find Full Text PDFP-type ATPases of the IIC subfamily exhibit large differences in sensitivity toward ouabain. This allows a strategy in which ouabain-insensitive members of this subfamily are used as template for mutational elucidation of the ouabain-binding site. With this strategy, we recently identified seven amino acids in Na,K-ATPase that conferred high affinity ouabain binding to gastric H,K-ATPase (Qiu, L.
View Article and Find Full Text PDF