Publications by authors named "Elisa Boscolo"

Three-dimensional (3D) imaging of vascular networks is essential for the investigation of vascular patterning and organization. Here, we present a step-by-step protocol for the 3D visualization of the vasculature within whole-mount preparations of the mouse intestinal muscularis propria layer. We then detail the quantitative analysis of the resulting images for parameters such as vessel density, vessel diameter, the number of endothelial cells, and proliferation.

View Article and Find Full Text PDF

Capillary malformation (CM), or port wine birthmark, is a cutaneous congenital vascular anomaly that occurs in 0.1%-2% of newborns. Patients with a CM localized on the forehead have an increased risk of developing a neurocutaneous disorder called encephalotrigeminal angiomatosis or Sturge-Weber syndrome (SWS), with complications including seizure, developmental delay, glaucoma, and vision loss.

View Article and Find Full Text PDF

Venous malformations (VMs) consist of hugely enlarged and dysmorphic veins. These lesions cause significant disfigurement, pain, and complications such as bleeding and coagulopathy. Pharmacotherapy for the treatment of VMs has limited efficacy and potentially limiting toxicity.

View Article and Find Full Text PDF

Activating non-inherited mutations in the guanine nucleotide-binding protein G(q) subunit alpha (GNAQ) gene family have been identified in childhood vascular tumors. Patients experience extensive disfigurement, chronic pain and severe complications including a potentially lethal coagulopathy termed Kasabach-Merritt phenomenon. Animal models for this class of vascular tumors do not exist.

View Article and Find Full Text PDF

Somatic mutations in NRAS drive the pathogenesis of melanoma and other cancers but their role in vascular anomalies and specifically human endothelial cells is unclear. The goals of this study were to determine whether the somatic-activating NRAS mutation in human endothelial cells induces abnormal angiogenesis and to develop in vitro and in vivo models to identify disease-causing pathways and test inhibitors. Here, we used mutant NRAS and wild-type NRAS (NRAS) expressing human endothelial cells in in vitro and in vivo angiogenesis models.

View Article and Find Full Text PDF

Propranolol is a nonselective β-adrenergic receptor (AR) blocker that has been the first-line therapy for problematic infantile hemangioma (IH), the most frequent childhood vascular tumor. Although IHs are benign and eventually regress spontaneously, at least 15% of patients require treatment. Despite the extensive use of propranolol for IH treatment, its mode of action remains unclear.

View Article and Find Full Text PDF

Xenograft models allow for an in vivo approach to monitor cellular functions within the context of a host microenvironment. Here we describe a protocol to generate a xenograft model of venous malformation (VM) based on the use of human umbilical vein endothelial cells (HUVEC) expressing a constitutive active form of the endothelial tyrosine kinase receptor TEK (TIE2 p.L914F) or patient-derived EC containing TIE2 and/or PIK3CA gene mutations.

View Article and Find Full Text PDF

Kaposiform lymphangiomatosis (KLA) is a rare, life-threatening congenital lymphatic malformation. Diagnosis is often delayed due to complex indistinct symptoms. Blood angiopoietin-2 (ANG2) levels are elevated in KLA and may be useful as a biomarker to monitor disease status.

View Article and Find Full Text PDF

Venous malformation (VM) is a vascular anomaly that arises from impaired development of the venous network resulting in dilated and often dysfunctional veins. The purpose of this article is to carefully describe the establishment of a murine xenograft model that mimics human VM and is able to reflect patient heterogeneity. Hyper-activating non-inherited (somatic) TEK (TIE2) and PIK3CA mutations in endothelial cells (EC) have been identified as the main drivers of pathological vessel enlargement in VM.

View Article and Find Full Text PDF

Capillary lymphatic venous malformations (CLVM) are complex vascular anomalies characterized by aberrant and enlarged lymphatic and blood vessels. CLVM appear during fetal development and enlarge after birth, causing life-long complications such as coagulopathy, pulmonary embolism, chronic pain, and disfigurement. Treatment includes surgical debulking, amputation, and recurrent sclerotherapy.

View Article and Find Full Text PDF

Abnormalities in controlling key aspects of angiogenesis including vascular cell migration, lumen formation and vessel maturation are hallmarks of vascular anomalies including venous malformation (VM). Gain-of-function mutations in the tyrosine kinase receptor TIE2 can cause VM and induce a ligand-independent hyperactivation of TIE2. Despite these important findings, the TIE2-dependent mechanisms triggering enlarged vascular lesions are not well understood.

View Article and Find Full Text PDF

The phosphoinositide 3-kinase (PI3K) pathway is a major mediator of growth factor signaling, cell proliferation and metabolism. Somatic gain-of-function mutations in , the catalytic subunit of PI3K, have recently been discovered in a number of vascular anomalies. The timing and origin of these mutations remain unclear although they are believed to occur during embryogenesis.

View Article and Find Full Text PDF

Background: Kaposiform lymphangiomatosis (KLA) is a rare lymphatic anomaly with significant morbidity and mortality. KLA is characterized by diffuse multifocal lesions comprised of focal areas of "kaposiform" spindled cells accompanying malformed lymphatic channels. The goal of this study was to identify activated signaling pathways in cells isolated from three KLA patients for the purpose of testing new therapies.

View Article and Find Full Text PDF

Patients with neurofibromatosis type 1 (NF1) are predisposed to develop neurofibromas, but the underlying molecular mechanisms of neurofibromagenesis are not fully understood. We showed dual genetic deletion of and in Schwann cells (SCs) and SC precursors delayed neurofibromagenesis and prolonged mouse survival. We identified peripheral myelin protein 22 () related to neurofibroma initiation.

View Article and Find Full Text PDF

Objective- Venous malformations (VMs) arise from developmental defects of the vasculature and are characterized by massively enlarged and tortuous venous channels. VMs grow commensurately leading to deformity, obstruction of vital structures, bleeding, and pain. Most VMs are associated with the activating mutation L914F in the endothelial cell (EC) tyrosine kinase receptor TIE2.

View Article and Find Full Text PDF

Angiosarcoma is an aggressive malignancy of vascular origin that occurs or in the context of previous cancer therapy. Despite multi-modal aggressive treatment including surgical resection, chemotherapy, and radiation, five-year overall survival remains poor at 35%. Due to its rarity, little is known about its molecular pathology and clinical trials have been extremely difficult to conduct.

View Article and Find Full Text PDF

Vascular malformations are defects caused by the abnormal growth of the vasculature. Among them, venous malformation (VM) is an anomaly characterized by slow-flow vascular lesions with abnormally shaped veins, typically in sponge-like configuration. VMs can expand over years causing disfigurement, obstruction of vital structures, thrombosis, bleeding, and pain.

View Article and Find Full Text PDF

Little is known about the factors that regulate the asymmetric division of cancer stem-like cells (CSC). Here, we demonstrate that EGFL6, a stem cell regulatory factor expressed in ovarian tumor cells and vasculature, regulates ALDH ovarian CSC. EGFL6 signaled at least in part via the oncoprotein SHP2 with concomitant activation of ERK.

View Article and Find Full Text PDF

The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis.

View Article and Find Full Text PDF

Venous malformations (VMs) are composed of ectatic veins with scarce smooth muscle cell coverage. Activating mutations in the endothelial cell tyrosine kinase receptor TIE2 are a common cause of these lesions. VMs cause deformity, pain, and local intravascular coagulopathy, and they expand with time.

View Article and Find Full Text PDF

Lymphatic malformations (LM) are characterized by abnormal formation of lymphatic vessels and tissue overgrowth. The lymphatic vessels present in LM lesions may become blocked and enlarged as lymphatic fluid collects, forming a mass or cyst. Lesions are typically diagnosed during childhood and are often disfiguring and life threatening.

View Article and Find Full Text PDF

Fibrotic diseases of the lung are associated with a vascular remodelling process. Fibrocytes (Fy) are a distinct population of blood-borne cells that co-express haematopoietic cell antigens and fibroblast markers, and have been shown to contribute to organ fibrosis. The purpose of this study was to determine whether fibrocytes cooperate with endothelial colony-forming cells (ECFC) to induce angiogenesis.

View Article and Find Full Text PDF

Infantile hemangioma (IH) is the most common tumor of infancy. Hemangioma stem cells (HemSC) are a mesenchymal subpopulation isolated from IH CD133+ cells. HemSC can differentiate into endothelial and pericyte/smooth muscle cells and form vascular networks when injected in immune-deficient mice.

View Article and Find Full Text PDF

Objective: Infantile hemangioma (IH) is a rapidly growing vascular tumor affecting newborns. It is composed of immature endothelial cells and pericytes that proliferate into a disorganized mass of blood vessels. We isolated pericytes from IH (Hem-pericytes) to test our hypothesis that Hem-pericytes are unable to stabilize blood vessels.

View Article and Find Full Text PDF

Inflammatory cytokines and growth factors drive angiogenesis independently; however, their integrated role in pathologic and physiologic angiogenesis is not fully understood. Suppressor of cytokine signaling-3 (SOCS3) is an inducible negative feedback regulator of inflammation and growth factor signaling. In the present study, we show that SOCS3 curbs pathologic angiogenesis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhuo7l2jukb6q6g3557ctgnnecqi2ncon): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once