Publications by authors named "Elisa B O John"

We report a novel hybrid, molecular and elemental mass spectrometry (MS) setup for the absolute quantification of snake venom proteomes shown here for two desert black cobra species within the genus , and . The experimental design includes the decomplexation of the venom samples by reverse-phase chromatography independently coupled to four mass spectrometry systems: the combined bottom-up and top-down molecular MS for protein identification and a parallel reverse-phase microbore high-performance liquid chromatograph (RP-μHPLC) on-line to inductively coupled plasma (ICP-MS/MS) elemental mass spectrometry and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QToF MS). This allows to continuously record the absolute sulfur concentration throughout the chromatogram and assign it to the parent venom proteins separated in the RP-μHPLC-ESI-QToF parallel run via mass profiling.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) do not have rigid 3D structures, showing changes in their folding depending on the environment or ligands. Intrinsically disordered proteins are widely spread in eukaryotic genomes, and these proteins participate in many cell regulatory metabolism processes. Some IDPs, when aberrantly folded, can be the cause of some diseases such as Alzheimer's, Parkinson's, and prionic, among others.

View Article and Find Full Text PDF

Chalcones and flavonoids constitute a large family of plant secondary metabolites that have been explored as a potential source of novel pharmaceutical products. While the simulation of these compounds by molecular dynamics (MD) can be a valuable strategy to assess their conformational properties and so further develop their role in drug discovery, there are no set of force field parameters specifically designed and experimentally validated for their conformational description in condensed phase. So the current work developed a new parameter set for MD simulations of these compounds' main scaffolds under GROMOS force field.

View Article and Find Full Text PDF