Publications by authors named "Elisa Angeloni"

Neurosteroids have a crucial role in physiological intrinsic regulations of the Central Nervous System functions. They are derived from peripheral steroidogenic sources and from the de novo neurosteroidogenic capacity of brain cells. Significant alterations of neurosteroid levels have been frequently observed in neuroinflammation and neurodegenerative diseases.

View Article and Find Full Text PDF
Article Synopsis
  • * A small library of dual modulators was created using 2-phenylindole structures, showing effectiveness in binding to TSPO and activating CA VII.
  • * One promising compound demonstrated no cytotoxicity, stimulated TSPO function, activated CA VII, and increased expression of brain-derived neurotrophic factor, highlighting its potential for further development.
View Article and Find Full Text PDF

Mature oligodendrocytes (OLs) arise from oligodendrocyte precursor cells that, in case of demyelination, are recruited at the lesion site to remyelinate the axons and therefore restore the transmission of nerve impulses. It has been widely documented that exogenously administered steroid molecules are potent inducers of myelination. However, little is known about how neurosteroids produced de novo by OLs can impact this process.

View Article and Find Full Text PDF

Neurodegenerative disease-associated microglia commonly exhibit harmful cholesterol accumulation that impairs their ability to resolve the neuroinflammatory response, contributing to disease onset and progression. Neurosteroids, whose levels have been often found significantly altered in brain diseases, are the most potent endogenous anti-inflammatory molecules exerting beneficial effects on activities of brain cells, including microglia. For the first time, the impact of neurosteroidogenesis on cholesterol homeostasis for the immune surveillance phenotype maintenance was investigated in a human microglia in vitro model.

View Article and Find Full Text PDF