Recently, there has been growing interest in the miniaturization and integration of atomic-based quantum technologies. In addition to the obvious advantages brought by such integration in facilitating mass production, reducing the footprint, and reducing the cost, the flexibility offered by on-chip integration enables the development of new concepts and capabilities. In particular, recent advanced techniques based on computer-assisted optimization algorithms enable the development of newly engineered photonic structures with unconventional functionalities.
View Article and Find Full Text PDFWe experimentally demonstrate hyperfine optical pumping of rubidium atoms probed by an evanescent electromagnetic field at a dielectric-vapor interface. This light-atom interaction at the nanoscale is investigated using a right angle prism integrated with a vapor cell and excited by evanescent wave under total internal reflection. An efficient hyperfine optical pumping, leading to almost complete suppression of absorption on the probed evanescent signal, is observed when a pump laser beam is sent at normal incidence to the interface.
View Article and Find Full Text PDFWe demonstrate numerically and experimentally the enhancement of Surface Plasmon Resonance (SPR) sensing via dispersion engineering of the plasmonic response using plasmonic nanograting. Following their design and optimization, the plasmonic nanograting structures are fabricated using e-beam lithography and lift-off process and integrated into conventional prism based Kretschmann configuration. The presence of absorptive nanograting near the metal film, provides strong field enhancement with localization and allows to control the dispersion relation which was originally dictated by a conventional SPR structure.
View Article and Find Full Text PDFSpace variant beams are of great importance for a variety of applications that have emerged in recent years. As such, manipulation of their degrees of freedom is highly desired. Here, we study the general interaction of space variant beams with a magnetically influenced Rb medium exploiting the atoms versatile properties in terms of frequency and intensity dependent circular dichroism and circular birefringence.
View Article and Find Full Text PDF