Publications by authors named "Eliot Zhu"

Combined BRAF and MEK inhibition is an effective treatment for BRAF-mutant cutaneous melanoma. However, most patients progress on this treatment due to drug resistance. Here, we applied the transposon system to understand how melanoma evades MAPK inhibition.

View Article and Find Full Text PDF

Rare gain-of-function mutations in RAC1 drive drug resistance to targeted BRAF inhibition in cutaneous melanoma. Here, we show that wildtype RAC1 is a critical driver of growth and drug resistance, but only in a subset of melanomas with elevated markers of de-differentiation. Similarly, SRC inhibition also selectively sensitized de-differentiated melanomas to BRAF inhibition.

View Article and Find Full Text PDF

Background: The mechanism of action for most cancer drugs is not clear. Large-scale pharmacogenomic cancer cell line datasets offer a rich resource to obtain this knowledge. Here, we present an analysis strategy for revealing biological pathways that contribute to drug response using publicly available pharmacogenomic cancer cell line datasets.

View Article and Find Full Text PDF

The use of selective BRAF inhibitors (BRAFi) has produced remarkable outcomes for patients with advanced cutaneous melanoma harboring a mutation. Unfortunately, the majority of patients eventually develop drug-resistant disease. We employed a genetic screening approach to identify gain-of-function mechanisms of BRAFi resistance in two independent melanoma cell lines.

View Article and Find Full Text PDF

Background: The introduction of genome-wide shRNA and CRISPR libraries has facilitated cell-based screens to identify loss-of-function mutations associated with a phenotype of interest. Approaches to perform analogous gain-of-function screens are less common, although some reports have utilized arrayed viral expression libraries or the CRISPR activation system. However, a variety of technical and logistical challenges make these approaches difficult for many labs to execute.

View Article and Find Full Text PDF

Kinase gene fusions are important drivers of oncogenic transformation and can be inhibited with targeted therapies. Clinical grade diagnostics using RNA sequencing to detect gene rearrangements in solid tumors are limited, and the few that are available require prior knowledge of fusion break points. To address this, we have analytically validated a targeted RNA sequencing assay (OSU-SpARKFuse) for fusion detection that interrogates complete transcripts from 93 kinase and transcription factor genes.

View Article and Find Full Text PDF

Massively parallel sequencing technologies have enabled characterization of genomic alterations across multiple tumor types. Efforts have focused on identifying driver mutations because they represent potential targets for therapy. However, because of the presence of driver and passenger mutations, it is often challenging to assign the clinical relevance of specific mutations observed in patients.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqrf11odhd0q0skq0q0qjtl1l2tu2ovr1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once