Unlabelled: Mature type 1 insulin-like growth factor receptors (IGF-1Rs) are heterotetrameric structures comprising two extracellular α-subunits disulphide-bonded to two transmembrane β-subunits with tyrosine kinase activity. IGF-1R is a well-known cell surface mediator of malignant growth, with an incompletely understood role upon nuclear import as a transcriptional regulator. Previous characterisation of nuclear IGF-1R focused on IGF-1Rβ.
View Article and Find Full Text PDFThe insulin like growth factor (IGF) axis plays a fundamental role in normal growth and development, and when deregulated makes an important contribution to disease. Here, we review the functions mediated by ligand-induced IGF axis activation, and discuss the evidence for the involvement of IGF signaling in the pathogenesis of cancer, endocrine disorders including acromegaly, diabetes and thyroid eye disease, skin diseases such as acne and psoriasis, and the frailty that accompanies aging. We discuss the use of IGF axis inhibitors, focusing on the different approaches that have been taken to develop effective and tolerable ways to block this important signaling pathway.
View Article and Find Full Text PDFInternalization of ligand-activated type I IGF receptor (IGF1R) is followed by recycling to the plasma membrane, degradation or nuclear translocation. Nuclear IGF1R reportedly associates with clinical response to IGF1R inhibitory drugs, yet its role in the nucleus is poorly characterized. Here, we investigated the significance of nuclear IGF1R in clinical cancers and cell line models.
View Article and Find Full Text PDFWe report an inhibitor of the homodimeric protein-protein interaction of the BCL6 oncoprotein, identified from a genetically encoded SICLOPPS library of 3.2 million cyclic hexapeptides in combination with a bacterial reverse two-hybrid system. This cyclic peptide is shown to bind the BTB domain of BCL6, disrupts its homodimerization, and subsequent binding of the SMRT2 corepressor peptide.
View Article and Find Full Text PDFCyclic peptides are an important class of molecules that are increasingly viewed as an ideal scaffold for inhibition of protein-protein interactions (PPI). Here we detail an approach that enables the intracellular synthesis of cyclic peptide libraries of around 10 members. The method utilizes split intein mediated circular ligation of peptides and proteins (SICLOPPS), taking advantage of split intein splicing to cyclize a library of peptide sequences.
View Article and Find Full Text PDFThe identification of initial hits is a crucial stage in the drug discovery process. Although many projects adopt high-throughput screening of small-molecule libraries at this stage, there is significant potential for screening libraries of macromolecules created using chemical biology approaches. Not only can the production of the library be directly interfaced with a cell-based assay, but these libraries also require significantly fewer resources to generate and maintain.
View Article and Find Full Text PDF