Publications by authors named "Eliot B Petersen"

We report a unique all fiber-based single-frequency Q-switched laser in a monolithic master oscillator power amplifier configuration at ~1920 nm by using highly Tm-doped germanate fibers for the first time. The actively Q-switched fiber laser seed was achieved by using a piezo to press the fiber in the fiber Bragg grating cavity and modulate the fiber birefringence, enabling Q-switching with pulse width and repetition rate tunability. A single-mode polarization maintaining large core 25 μm highly Tm-doped germanate fiber was used in the power amplifier stage.

View Article and Find Full Text PDF

We demonstrate a high-stimulated-Brillouin-scattering-threshold monolithic pulsed fiber laser in a master oscillator power amplifier configuration that can operate over the C band. In the power amplifier stage, we used a newly developed single-mode, polarization maintaining, and highly Er/Yb codoped phosphate fiber with a core diameter of 25 microm. A single-frequency actively Q-switched fiber laser was used to generate pulses in the hundreds of nanoseconds at 1530 nm.

View Article and Find Full Text PDF

We demonstrate a resonant external cavity approach to enhance narrowband terahertz radiation through difference-frequency generation for the first time (to our knowledge). Two nanosecond laser pulses resonant in an optical cavity interact with a nonlinear crystal to produce a factor of 7 enhancement of terahertz power compared to a single-pass orientation. This external enhancement approach shows promise to significantly increase both terahertz power and conversion efficiency through optical pump pulse enhancement and effective recycling.

View Article and Find Full Text PDF

We report a high SBS-threshold, single-frequency, single-mode, polarization maintaining (PM) monolithic pulsed fiber laser source in master oscillator and power amplifier (MOPA) configuration that can operate over the C-band. In order to achieve a narrow transform-limited linewidth for pulses longer than 100 ns, we use a single-frequency Q-switched fiber laser seed, which itself can be seamlessly tuned up to 1.24 micros.

View Article and Find Full Text PDF