Publications by authors named "Elinor Tzvi"

Cerebellar transcranial alternating current stimulation (tACS) is an emerging non-invasive technique that induces electric fields to modulate cerebellar function. Although the effect of cortical tACS seems to be state-dependent, the impact of concurrent motor activation and the duration of stimulation on the effects of cerebellar tACS has not yet been examined. In our study, 20 healthy subjects received neuronavigated 50 Hz cerebellar tACS for 40 s or 20 min, each during performance using a motor sequence learning task (MSL) and at rest.

View Article and Find Full Text PDF

Motor learning is defined as an improvement in performance through practice. The ability to learn new motor skills may be particularly challenged in patients with Parkinson's disease, in whom motor execution is impaired by the disease-defining motor symptoms such as bradykinesia. Subthalamic deep brain stimulation is an effective treatment in advanced Parkinson's disease, and its beneficial effects on Parkinsonian motor symptoms and motor execution have been widely demonstrated.

View Article and Find Full Text PDF

Essential tremor (ET) is a progressive movement disorder whose pathophysiology is not fully understood. Current evidence supports the view that the cerebellum is critically involved in the genesis of the tremor in ET. However, it is still unknown whether cerebellar dysfunction affects not only the control of current movements but also the prediction of future movements through dynamic adaptation toward a changed environment.

View Article and Find Full Text PDF

The cerebellum and its interaction with cortical areas play a key role in our ability to flexibly adapt a motor program in response to sensory input. Current knowledge about specific neural mechanisms underlying the process of visuomotor adaptation is however lacking. Using a novel placement of EEG electrodes to record electric activity from the cerebellum, we studied local cerebellar activity, as well as its coupling with neocortical activity to obtain direct neurophysiological markers of visuomotor adaptation in humans.

View Article and Find Full Text PDF

Transcranial alternating current stimulation (tACS) modulates oscillations in a frequency- and location-specific manner and affects cognitive and motor functions. This effect appears during stimulation as well as "offline," following stimulation, presumably reflecting neuroplasticity. Whether tACS produces long-lasting aftereffects that are physiologically meaningful, is still of current debate.

View Article and Find Full Text PDF

Alpha oscillations (8-13 Hz) have been suggested to play an important role in dynamic neural processes underlying learning and memory. The goal of this study was to scrutinize the role of alpha oscillations in communication within a cortico-cerebellar network implicated in motor sequence learning. To this end, we conducted two EEG experiments using a serial reaction time task.

View Article and Find Full Text PDF

Background: Writer's cramp (WC), a task specific form of dystonia, is considered to be a motor network disorder, but abnormal sensory tactile processing has also been acknowledged. The sensory spatial discrimination threshold (SDT) can be determined with a spatial acuity test (JVP domes). In addition to increased SDT, patients with WC exhibited dysfunctional sensory processing in the sensory cortex, insula, basal ganglia and cerebellum in a functional magnetic resonance imaging (fMRI) study while performing the spatial acuity test.

View Article and Find Full Text PDF

Previous studies have shown that persons with Parkinson's disease (pwPD) share specific deficits in learning new sequential movements, but the neural substrates of this impairment remain unclear. In addition, the degree to which striatal dopaminergic denervation in PD affects the cortico-striato-thalamo-cerebellar motor learning network remains unknown. We aimed to answer these questions using fMRI in 16 pwPD and 16 healthy age-matched control subjects while they performed an implicit motor sequence learning task.

View Article and Find Full Text PDF

Motivational influences on cognitive control play an important role in shaping human behavior. Cognitive facilitation through motivators such as prospective reward or punishment is thought to depend on regions from the dopaminergic mesocortical network, primarily the ventral tegmental area (VTA), inferior frontal junction (IFJ), and anterior cingulate cortex (ACC). However, how interactions between these regions relate to motivated control remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • The brain's ability to quickly adjust performance in response to changing environments is due to the process of adaptation, particularly in how motor programs are modified.
  • This mini-review highlights the cerebellum's crucial role in visuomotor adaptation, emphasizing its interactions with the premotor and parietal cortices.
  • The review organizes findings into four main areas: evidence from cerebellar patient studies, imaging insights into cerebellar function, interactions between the premotor cortex and cerebellum, and experimental results linking cerebellar activity to visuomotor adaptations.
View Article and Find Full Text PDF

Dystonia is conceptualized as a network disorder involving basal ganglia, thalamus, sensorimotor cortex and the cerebellum. The cerebellum has been implicated in dystonia pathophysiology, but studies testing cerebellar function in dystonia patients have provided equivocal results. This study aimed to further elucidate motor network deficits in cervical dystonia with special interest in the role of the cerebellum.

View Article and Find Full Text PDF

Non-invasive brain stimulation techniques including repetitive transcranial magnetic stimulation (rTMS), continuous theta-burst stimulation (cTBS), paired associative stimulation (PAS), and transcranial direct current stimulation (tDCS) have been applied over the cerebellum to induce plasticity and gain insights into the interaction of the cerebellum with neo-cortical structures including the motor cortex. We compared the effects of 1 Hz rTMS, cTBS, PAS and tDCS given over the cerebellum on motor cortical excitability and interactions between the cerebellum and dorsal premotor cortex / primary motor cortex in two within subject designs in healthy controls. In experiment 1, rTMS, cTBS, PAS, and tDCS were applied over the cerebellum in 20 healthy subjects.

View Article and Find Full Text PDF

Non-invasive transcranial stimulation of cerebellum and primary motor cortex (M1) has been shown to enhance motor learning. However, the mechanisms by which stimulation improves learning remain largely unknown. Here, we sought to shed light on the neural correlates of transcranial direct current stimulation (tDCS) during motor learning by simultaneously recording functional magnetic resonance imaging (fMRI).

View Article and Find Full Text PDF

Visuomotor adaptation (VMA) is a form of motor learning essential for performing day to day routines. Theoretical models and empirical evidence suggest a specific cortico-striato-cerebellar loop that mediates early and late learning in VMA. Here, we investigated dynamic changes in neural activity and connectivity when learning a novel visuomotor rotation using fMRI.

View Article and Find Full Text PDF

Background: In Parkinson's disease (PD), dopamine replacement therapy (DRT) enhances the effective connectivity of the prefrontal cortex (PFC) and supplementary motor area (SMA). The clinical effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN) go beyond DRT effects including highly beneficial tremor suppression.

Objectives: Here, we aimed to determine DBS-related changes of a motor network using resting state fMRI in PD patients with chronic STN DBS.

View Article and Find Full Text PDF

Proactive motor control is a preparatory mechanism facilitating upcoming action inhibition or adaptation. Previous studies investigating proactive motor control mostly focused on response inhibition, as in the classical go-nogo or stop-signal tasks. However, everyday life rarely calls for the complete suppression of actions without subsequent behavioral adjustment.

View Article and Find Full Text PDF

Cross-frequency coupling is suggested to serve transfer of information between wide-spread neuronal assemblies and has been shown to underlie many cognitive functions including learning and memory. In previous work, we found that alpha (8-13 Hz) - gamma (30-48 Hz) phase amplitude coupling (αγPAC) is decreased during sequence learning in bilateral frontal cortex and right parietal cortex. We interpreted this to reflect decreased demands for visuo-motor mapping once the sequence has been encoded.

View Article and Find Full Text PDF

The cerebellum plays an important role in motor learning as part of a cortico-striato-cerebellar network. Patients with cerebellar degeneration typically show impairments in different aspects of motor learning, including implicit motor sequence learning. How cerebellar dysfunction affects interactions in this cortico-striato-cerebellar network is poorly understood.

View Article and Find Full Text PDF

Proactive motor inhibition refers to endogenous preparatory mechanisms facilitating action inhibition, whereas reactive motor inhibition is considered to be a sudden stopping process triggered by external signals. Previous studies were inconclusive about the temporal dynamics of involved neurocognitive processes during proactive and reactive motor control. Using electroencephalography (EEG), we investigated the time-course of proactive and reactive inhibition, measuring event-related oscillations and event-related potentials (ERPs).

View Article and Find Full Text PDF

Changes in the environment require rapid modification or inhibition of ongoing behavior. We used the stop-signal paradigm and intracranial recordings to investigate response preparation, inhibition, and monitoring of task-relevant information. Electrocorticographic data were recorded in eight patients with electrodes covering frontal, temporal, and parietal cortex, and time-frequency analysis was used to examine power differences in the beta (13-30 Hz) and high-gamma bands (60-180 Hz).

View Article and Find Full Text PDF

The fast and slow learning stages of motor sequence learning are suggested to be realized through plasticity in a distributed cortico-striato-cerebellar network. To better understand the causal interactions within this network in the different phases of motor sequence learning, we investigated the effective connectivity within this network during encoding (Day 1) and after consolidation (Day 2) of a serial reaction time task. Using Dynamic Causal Modelling of fMRI data, we found general changes in network connections reflected in altered input nodes and endogenous connections when comparing the early and fast learning session to the late and slow learning session.

View Article and Find Full Text PDF

Theoretical models and experimental evidence suggest that cortico-striatal-cerebellar networks play a crucial role in mediating motor sequence learning. However, how these different regions interact in order to mediate learning is less clear. In the present fMRI study, we used dynamic causal modeling to investigate effective connectivity within the cortico-striatal-cerebellar network while subjects performed a serial reaction time task.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8s167pnk22en6ir7pj3ugbgu6rciub4n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once