Publications by authors named "Elina Roine"

(1) Background: Haloarchaea comprise extremely halophilic organisms of the Archaea domain. They are single-cell organisms with distinctive membrane lipids and a protein-based cell wall or surface layer (S-layer) formed by a glycoprotein array. Pleolipoviruses, which infect haloarchaeal cells, have an envelope analogous to eukaryotic enveloped viruses.

View Article and Find Full Text PDF

Species of genus are among the most frequently identified psychrotrophic bacteria. Here, we have studied the cellular properties, growth dynamics, and stress conditions of cold-active strain #4, which was previously isolated from Baltic Sea ice. The cells are rod-shaped of ~2μm in length and 0.

View Article and Find Full Text PDF

Many of the largest known viruses belong to the PRD1-adeno structural lineage characterised by conserved pseudo-hexameric capsomers composed of three copies of a single major capsid protein (MCP). Here, by high-resolution cryo-EM analysis, we show that a class of archaeal viruses possess hetero-hexameric MCPs which mimic the PRD1-adeno lineage trimer. These hetero-hexamers are built from heterodimers and utilise a jigsaw-puzzle system of pegs and holes, and underlying minor capsid proteins, to assemble the capsid laterally from the 5-fold vertices.

View Article and Find Full Text PDF

Lipid membrane fusion is an essential function in many biological processes. Detailed mechanisms of membrane fusion and the protein structures involved have been mainly studied in eukaryotic systems, whereas very little is known about membrane fusion in prokaryotes. Haloarchaeal pleomorphic viruses (HRPVs) have a membrane envelope decorated with spikes that are presumed to be responsible for host attachment and membrane fusion.

View Article and Find Full Text PDF

While filamentous cyanobacteria play a crucial role in food web dynamics and biogeochemical cycling of many aquatic ecosystems around the globe, the knowledge regarding the phages infecting them is limited. Here, we describe the complete genome of the virulent cyanophage vB_AphaS-CL131 (here, CL 131), a phage that infects the filamentous diazotrophic bloom-forming cyanobacterium in the brackish Baltic Sea. CL 131 features a 112,793-bp double-stranded DNA (dsDNA) genome encompassing 149 putative open reading frames (ORFs), of which the majority (86%) lack sequence homology to genes with known functions in other bacteriophages or bacteria.

View Article and Find Full Text PDF

N-glycosylation is a post-translational modification that occurs in all three domains. In Archaea, however, N-linked glycans present a degree of compositional diversity not observed in either Eukarya or Bacteria. As such, it is surprising that nonulosonic acids (NulOs), nine-carbon sugars that include sialic acids, pseudaminic acids, and legionaminic acids, are routinely detected as components of protein-linked glycans in Eukarya and Bacteria but not in Archaea.

View Article and Find Full Text PDF

Members of the family Pleolipoviridae (termed pleolipoviruses) are pseudo-spherical and pleomorphic archaeal viruses. The enveloped virion is a simple membrane vesicle, which encloses different types of DNA genomes of approximately 7-16 kbp (or kilonucleotides). Typically, virions contain a single type of transmembrane (spike) protein at the envelope and a single type of membrane protein, which is embedded in the envelope and located in the internal side of the membrane.

View Article and Find Full Text PDF

Viruses infecting archaea show a variety of virion morphotypes, and they are currently classified into more than ten viral families or corresponding groups. A pleomorphic virus morphotype is very common among haloarchaeal viruses, and to date, several such viruses have been isolated. Here, we propose the classification of eight such viruses and formation of a new family, Pleolipoviridae (from the Greek pleo for more or many and lipos for lipid), containing three genera, Alpha-, Beta-, and Gammapleolipovirus.

View Article and Find Full Text PDF

Lipid-containing bacteriophages were discovered late and considered to be rare. After further phage isolations and the establishment of the domain Archaea, several new prokaryotic viruses with lipids were observed. Consequently, the presence of lipids in prokaryotic viruses is reasonably common.

View Article and Find Full Text PDF

Heterotrophic bacteria are the major prokaryotic component of the Baltic Sea ice microbiome, and it is postulated that phages are among their major parasites. In this study, we sequenced the complete genomes of six earlier reported phage isolates from the Baltic Sea ice infecting Shewanella sp. and Flavobacterium sp.

View Article and Find Full Text PDF

Tailed viruses are the most common isolates infecting prokaryotic hosts residing in hypersaline environments. Archaeal tailed viruses represent only a small portion of all characterized tailed viruses of prokaryotes. But even this small dataset revealed that archaeal tailed viruses have many similarities to their counterparts infecting bacteria, the bacteriophages.

View Article and Find Full Text PDF

In search for sea ice bacteria and their phages from the Baltic Sea ice, two ice samples were collected from land-fast ice in a south-west Finland coastal site in February and March 2011. Bacteria were isolated from the melted sea ice samples and phages were screened from the same samples for 43 purified isolates. Plaque-producing phages were found for 15 bacterial isolates at 3 °C.

View Article and Find Full Text PDF

The complete genome sequences of archaeal tailed viruses are currently highly underrepresented in sequence databases. Here, we report the genomic sequences of 10 new tailed viruses infecting different haloarchaeal hosts. Among these, only two viral genomes are closely related to each other and to previously described haloviruses HF1 and HF2.

View Article and Find Full Text PDF

Archaeal viruses represent one of the least known territory of the viral universe and even less is known about their lipids. Based on the current knowledge, however, it seems that, as in other viruses, archaeal viral lipids are mostly incorporated into membranes that reside either as outer envelopes or membranes inside an icosahedral capsid. Mechanisms for the membrane acquisition seem to be similar to those of viruses infecting other host organisms.

View Article and Find Full Text PDF

When analyzing the secretome of the plant pathogen Pseudomonas syringae pv. tomato DC3000, we identified hemolysin-coregulated protein (Hcp) as one of the secreted proteins. Hcp is assumed to be an extracellular component of the type VI secretion system (T6SS).

View Article and Find Full Text PDF

VP4, the major structural protein of the haloarchaeal pleomorphic virus, HRPV-1, is glycosylated. To define the glycan structure attached to this protein, oligosaccharides released by β-elimination were analysed by mass spectrometry and nuclear magnetic resonance spectroscopy. Such analyses showed that the major VP4-derived glycan is a pentasaccharide comprising glucose, glucuronic acid, mannose, sulphated glucuronic acid and a terminal 5-N-formyl-legionaminic acid residue.

View Article and Find Full Text PDF

Archaeal viruses have been the subject of recent interest due to the diversity discovered in their virion architectures. Recently, a new group of haloarchaeal pleomorphic viruses has been discovered. It is distinctive in terms of the virion morphology and different genome types (ssDNA/dsDNA) harboured by rather closely related representatives.

View Article and Find Full Text PDF

Hypersaline environments are dominated by archaea and bacteria and are almost entirely devoid of eukaryotic organisms. In addition, hypersaline environments contain considerable numbers of viruses. Currently, there is only a limited amount of information about these haloviruses.

View Article and Find Full Text PDF

During the search for haloarchaeal viruses, we isolated and characterized a new pleomorphic lipid-containing virus, Haloarcula hispanica pleomorphic virus 1 (HHPV-1), that infects the halophilic archaeon Haloarcula hispanica. The virus contains a circular double-stranded DNA genome of 8,082 bp in size. The organization of the genome shows remarkable synteny and amino acid sequence similarity to the genome and predicted proteins of the halovirus HRPV-1, a pleomorphic single-stranded DNA virus that infects a halophilic archaeon Halorubrum sp.

View Article and Find Full Text PDF

Only a few archaeal viruses have been subjected to detailed structural analyses. Major obstacles have been the extreme conditions such as high salinity or temperature needed for the propagation of these viruses. In addition, unusual morphotypes of many archaeal viruses have made it difficult to obtain further information on virion architectures.

View Article and Find Full Text PDF

Archaeal organisms are generally known as diverse extremophiles, but they play a crucial role also in moderate environments. So far, only about 50 archaeal viruses have been described in some detail. Despite this, unusual viral morphotypes within this group have been reported.

View Article and Find Full Text PDF

The Archaea, and the viruses that infect them, are the least well understood of all of the three domains of life. They often grow in extreme conditions such as hypersaline lakes and sulfuric hot springs. Only rare glimpses have been gained into the structures of archaeal viruses.

View Article and Find Full Text PDF

Viruses infecting archaeal cells are less well understood than those infecting eukaryotic and bacterial cells. Here we study the distribution of the structural proteins between the capsid and the membrane of icosahedral SH1 virus, an archaeal virus infecting extreme halophilic Haloarcula hispanica cells. General features such as morphology, linear dsDNA genome and presence of lipids suggest that it may belong to the recently proposed PRD1-adenovirus lineage of viruses.

View Article and Find Full Text PDF

SUMMARY Pseudomonas syringae pv. tomato is the causative agent of bacterial speck of tomato. The key virulence determinant of P.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: