Publications by authors named "Elina Orblin"

The surface chemistry of milled birch and pine wood pretreated by ionic liquid, hydrothermal and hydrotropic methods, followed by enzymatic hydrolysis was studied in this work. Surface coverage by lignin was measured by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to describe the surface chemical composition after pretreatment in detail, and the morphology after pretreatment was investigated by FE-SEM. Ionic liquid (1-ethyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium chloride) pretreatment at room temperature made the samples swell but did not dissolve the wood.

View Article and Find Full Text PDF

The controlled heterogeneous modification of cellulose fibers with trifluoroacetic anhydride was investigated. The characterization of the ensuing materials was performed by elemental analysis, FTIR spectroscopy, X-ray diffraction (XRD), thermogravimetry, and surface analysis (XPS, ToF-SIMS, and contact angles measurements). The trifluoroacetylation enhanced significantly the hydrophobic and lipophobic character of the fibers, whereas their thermal stability and cristallinity were only modestly affected by this treatment, except under the most severe conditions for the latter.

View Article and Find Full Text PDF

The surface modification of cellulose fibers with 3,3,3-trifluoropropanoyl chloride (TFP) was studied in a toluene suspension. The characterization of the modified fibers was performed by elemental analysis, Fourier transform infrared (FTIR), 13C-solid-state NMR, X-ray diffraction, thermogravimetry, and surface analysis (XPS, ToF-SIMS, and contact angles measurements). The degree of substitution (DS) of the ensuing trifluoropropanoylated fibers ranged from less than 0.

View Article and Find Full Text PDF

New highly hydrophobic/lipophobic biopolymers were prepared by the controlled heterogeneous pentafluorobenzoylation of cellulose substrates, i.e., plant and bacterial cellulose fibers.

View Article and Find Full Text PDF