A large pilot-scale granular activated carbon (GAC) filter was operated downstream in a full-scale wastewater treatment plant to remove organic micropollutants. To describe the spatial and temporal developments of micropollutant adsorption profiles in the GAC filter, micropollutants were extracted from GAC media taken at various filter depths and number of treated bed volumes. At a low number of treated bed volumes (2600 BVs), most micropollutants were adsorbed in the top layers of the filter.
View Article and Find Full Text PDFActin filaments have key roles in cell motility but are generally claimed to be passive interaction partners in actin-myosin-based motion generation. Here, we present evidence against this static view based on an altered myosin-induced actin filament gliding pattern in an in vitro motility assay at varied [MgATP]. The statistics that characterize the degree of meandering of the actin filament paths suggest that for [MgATP] ≥ 0.
View Article and Find Full Text PDFThe combinatorial nature of many important mathematical problems, including nondeterministic-polynomial-time (NP)-complete problems, places a severe limitation on the problem size that can be solved with conventional, sequentially operating electronic computers. There have been significant efforts in conceiving parallel-computation approaches in the past, for example: DNA computation, quantum computation, and microfluidics-based computation. However, these approaches have not proven, so far, to be scalable and practical from a fabrication and operational perspective.
View Article and Find Full Text PDFBackground: Bundles of unipolar actin filaments (F-actin), cross-linked via the actin-binding protein fascin, are important in filopodia of motile cells and stereocilia of inner ear sensory cells. However, such bundles are also useful as shuttles in myosin-driven nanotechnological applications. Therefore, and for elucidating aspects of biological function, we investigate if the bundle tendency to follow straight paths (quantified by path persistence length) when propelled by myosin motors is directly determined by material properties quantified by persistence length of thermally fluctuating bundles.
View Article and Find Full Text PDFGeneration of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
November 2013
Actin filaments are central components of the cytoskeleton and the contractile machinery of muscle. The filaments are known to exist in a range of conformational states presumably with different flexural rigidity and thereby different persistence lengths. Our results analyze the approaches proposed previously to measure the persistence length from the statistics of the winding paths of actin filaments that are propelled by surface-adsorbed myosin motor fragments in the in vitro motility assay.
View Article and Find Full Text PDFSalt-bridge interactions between acidic and basic amino acids contribute to the structural stability of proteins and to protein-protein interactions. A conserved salt-bridge is a canonical feature of the α-defensin antimicrobial peptide family, but the role of this common structural element has not been fully elucidated. We have investigated mouse Paneth cell α-defensincryptdin-4 (Crp4) and peptide variants with mutations at Arg7 or Glu15 residue positions to disrupt the salt-bridge and assess the consequences on Crp4 structure, function, and stability.
View Article and Find Full Text PDF