Proc Natl Acad Sci U S A
April 2024
Biofilms inhabit a range of environments, such as dental plaques or soil micropores, often characterized by noneven surfaces. However, the impact of surface irregularities on the population dynamics of biofilms remains elusive, as most experiments are conducted on flat surfaces. Here, we show that the shape of the surface on which a biofilm grows influences genetic drift and selection within the biofilm.
View Article and Find Full Text PDFAntimicrob Agents Chemother
August 2020
Fluoroquinolones, antibiotics that cause DNA damage by inhibiting DNA topoisomerases, are clinically important, but their mechanism of action is not yet fully understood. In particular, the dynamical response of bacterial cells to fluoroquinolone exposure has hardly been investigated, although the SOS response, triggered by DNA damage, is often thought to play a key role. Here, we investigated the growth inhibition of the bacterium by the fluoroquinolone ciprofloxacin at low concentrations.
View Article and Find Full Text PDFPhenotypic delay-the time delay between genetic mutation and expression of the corresponding phenotype-is generally neglected in evolutionary models, yet recent work suggests that it may be more common than previously assumed. Here, we use computer simulations and theory to investigate the significance of phenotypic delay for the evolution of bacterial resistance to antibiotics. We consider three mechanisms which could potentially cause phenotypic delay: effective polyploidy, dilution of antibiotic-sensitive molecules and accumulation of resistance-enhancing molecules.
View Article and Find Full Text PDFBackground: Substrate cross-feeding occurs when one organism partially consumes a primary substrate into one or more metabolites while other organisms then consume the metabolites. While pervasive within microbial communities, our knowledge about the effects of substrate cross-feeding on microbial evolution remains limited. To address this knowledge gap, we experimentally evolved isogenic nitrite (NO) cross-feeding microbial strains together for 700 generations, identified genetic changes that were acquired over the evolution experiment, and compared the results with an isogenic completely denitrifying strain that was evolved alone for 700 generations.
View Article and Find Full Text PDFBackground: The production of toxic metabolites has shaped the spatial and temporal arrangement of metabolic processes within microbial cells. While diverse solutions to mitigate metabolite toxicity have evolved, less is known about how evolution itself is affected by metabolite toxicity. We hypothesized that the pace of molecular evolution should increase as metabolite toxicity increases.
View Article and Find Full Text PDFDifferent microbial cell types typically specialize at performing different metabolic processes. A canonical example is substrate cross-feeding, where one cell type consumes a primary substrate into an intermediate and another cell type consumes the intermediate. While substrate cross-feeding is widely observed, its consequences on ecosystem processes is often unclear.
View Article and Find Full Text PDFMetabolic specialization is a general biological principle that shapes the assembly of microbial communities. Individual cell types rarely metabolize a wide range of substrates within their environment. Instead, different cell types often specialize at metabolizing only subsets of the available substrates.
View Article and Find Full Text PDF