Publications by authors named "Elin Jaensson"

Intestinal dendritic cell and macrophage subsets are believed to play key roles in maintaining intestinal homeostasis in the steady state and in driving protective immune responses in the setting of intestinal infection. This mini-review focuses on recent progress regarding the ontogeny and function of small intestinal lamina propria dendritic cell/macrophage subsets. In particular we discuss recent findings suggesting that small intestinal CD103(+) dendritic cells and Cx3cr1(+) cells derive from distinct precursor populations and that CD103(+) dendritic cells represent the major migratory population of cells with a key role in initiating adaptive immune responses in the draining mesenteric lymph node.

View Article and Find Full Text PDF

Chemokine receptor CX3CR1(+) dendritic cells (DCs) have been suggested to sample intestinal antigens by extending transepithelial dendrites into the gut lumen. Other studies identified CD103(+) DCs in the mucosa, which, through their ability to synthesize retinoic acid (RA), appear to be capable of generating typical signatures of intestinal adaptive immune responses. We report that CD103 and CX3CR1 phenotypically and functionally characterize distinct subsets of lamina propria cells.

View Article and Find Full Text PDF

Although CD4(+) memory T cells reside within secondary lymphoid tissue, the major reservoir of these cells is in the lamina propria of the intestine. In this study, we demonstrate that, in the absence of signals through both OX40 and CD30, CD4(+) T cells are comprehensively depleted from the lamina propria. Deficiency in either CD30 or OX40 alone reduced CD4(+) T cell numbers, however, in mice deficient in both OX40 and CD30, CD4(+) T cell loss was greatly exacerbated.

View Article and Find Full Text PDF

A functionally distinct subset of CD103(+) dendritic cells (DCs) has recently been identified in murine mesenteric lymph nodes (MLN) that induces enhanced FoxP3(+) T cell differentiation, retinoic acid receptor signaling, and gut-homing receptor (CCR9 and alpha4beta7) expression in responding T cells. We show that this function is specific to small intestinal lamina propria (SI-LP) and MLN CD103(+) DCs. CD103(+) SI-LP DCs appeared to derive from circulating DC precursors that continually seed the SI-LP.

View Article and Find Full Text PDF

The default response of the intestinal immune system to most antigens is the induction of immunological tolerance, which is difficult to reconcile with the constant exposure to ligands for TLR and other pattern recognition receptors. We showed previously that dendritic cells (DC) from the lamina propria of normal mouse intestine may be inherently tolerogenic and here we have explored how this might relate to the expression and function of Toll-like receptors (TLR). Lamina propria (LP) DC showed higher levels of TLR 2, 3, 4 and 9 protein expression than spleen and MLN DC, with most TLR-expressing DC in the gut being CD11c(lo), class II MHC(lo), CD103(-), CD11b(-) and F4/80(-).

View Article and Find Full Text PDF

Background: The earliest immune events induced by allergens are poorly understood, yet are likely essential to understanding how allergic inflammation is established.

Objective: We sought to describe the earliest signaling events activated by allergen and determine their significance to allergic inflammation.

Methods: A fungal-associated allergenic proteinase (FAP) or ovalbumin was administered once intranasally to wild-type mice to determine their ability to induce allergy-associated genes and initiate allergic lung inflammation.

View Article and Find Full Text PDF

Flow cytometry provides accurate relative cellular quantitation (percent abundance) of cells from diverse samples, but technical limitations of most flow cytometers preclude accurate absolute quantitation. Several quantitation standards are now commercially available which, when added to samples, permit absolute quantitation of CD4+ T cells. However, these reagents are limited by their cost, technical complexity, requirement for additional software and/or limited applicability.

View Article and Find Full Text PDF

The gammadelta T cells generated during mouse fetal development are absolutely dependent on their invariant T-cell receptors (TCRs) for their function. However, there is little information on whether the epithelial homing properties of fetal T cells might also be developmentally induced by factors unrelated to TCR specificity. We have previously described TCR alpha-chain transgenic (2B4 TCR-alpha TG) mice, in which the transgenic TCR alpha-chain is expressed early, already at embryonic day 14 (E14).

View Article and Find Full Text PDF

We examined the effect of 17alpha-ethinylestradiol on immunity of the Western fence lizard, Sceloporus occidentalis. Injection of 17alpha-ethinylestradiol resulted in dose-dependent suppression of peripheral blood leukocyte levels as determined by cell counts, whereas total spleen cell levels were decreased only at higher doses of 17alpha-ethinylestradiol. In contrast, spleen cell proliferation was enhanced by 17alpha-ethinylestradiol as measured by reduction of MTT to formazan following a two-way mixed lymphocyte reaction.

View Article and Find Full Text PDF