Publications by authors named "Elin Einarsson"

Mitochondrial genomes of apicomplexans, dinoflagellates, and chrompodellids that collectively make up the Myzozoa, encode only three proteins (Cytochrome b [COB], Cytochrome c oxidase subunit 1 [COX1], Cytochrome c oxidase subunit 3 [COX3]), contain fragmented ribosomal RNAs, and display extensive recombination, RNA trans-splicing, and RNA-editing. The early-diverging Perkinsozoa is the final major myzozoan lineage whose mitochondrial genomes remained poorly characterized. Previous reports of Perkinsus genes indicated independent acquisition of non-canonical features, namely the occurrence of multiple frameshifts.

View Article and Find Full Text PDF

is an intestinal protozoan parasite that causes diarrheal infections worldwide. A key process to sustain its chain of transmission is the formation of infectious cysts in the encystation process. We combined deep RNAseq of a broad range of encystation timepoints to produce a high-resolution gene expression map of encystation.

View Article and Find Full Text PDF

The phylum Perkinsozoa is an aquatic parasite lineage that has devastating effects on commercial and natural mollusc populations, and also comprises parasites of algae, fish and amphibians. They are related to dinoflagellates and apicomplexans and thus offer excellent genetic models for both parasitological and evolutionary studies. Genetic transformation was previously achieved for Perkinsus spp.

View Article and Find Full Text PDF

Diplomonad parasites of the genus have adapted to colonizing different hosts, most notably the intestinal tract of mammals. The human-pathogenic species, , has been extensively studied at the genome and gene expression level, but no such information is available for other species. Comparative data would be particularly valuable for , which colonizes mice and is commonly used as a prototypic model for investigating host responses to intestinal parasitic infection.

View Article and Find Full Text PDF

Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa.

View Article and Find Full Text PDF

Molecular epidemiology and genotyping studies of the parasitic protozoan Giardia intestinalis have proven difficult due to multiple factors, such as low discriminatory power in the commonly used genotyping loci, which has hampered molecular analyses of outbreak sources, zoonotic transmission and virulence types. Here we have focused on assemblage A Giardia and developed a high-resolution assemblage-specific multilocus sequence typing (MLST) method. Analyses of sequenced G.

View Article and Find Full Text PDF

Background: Mitochondria of opisthokonts undergo permanent fission and fusion throughout the cell cycle. Here, we investigated the dynamics of the mitosomes, the simplest forms of mitochondria, in the anaerobic protist parasite Giardia intestinalis, a member of the Excavata supergroup of eukaryotes. The mitosomes have abandoned typical mitochondrial traits such as the mitochondrial genome and aerobic respiration and their single role known to date is the formation of iron-sulfur clusters.

View Article and Find Full Text PDF

Giardia intestinalis is a non-invasive protozoan parasite infecting the upper small intestine causing acute, watery diarrhea or giardiasis in 280 million people annually. Asymptomatic infections are equally common and recent data have suggested that infections even can be protective against other diarrheal diseases. Most symptomatic infections resolve spontaneously but infections can lead to chronic disease and treatment failures are becoming more common world-wide.

View Article and Find Full Text PDF

Annexins are multifunctional, calcium-binding proteins found in organisms across all kingdoms. Most studies of annexins from single-celled eukaryotes have focused on the alpha-giardins, proteins assigned to the group E annexins, expressed by the diplomonad Giardia intestinalis. We have characterized the annexin gene family in another diplomonad parasite, Spironucleus salmonicida, by phylogenetic and experimental approaches.

View Article and Find Full Text PDF

Differentiation into infectious cysts through the process of encystation is crucial for transmission and survival of the intestinal protozoan parasite Giardia intestinalis. Hitherto the majority of studies have focused on the early events, leaving late encystation poorly defined. In order to further study encystation, focusing on the later events, we developed a new encystation protocol that generates a higher yield of mature cysts compared to standard methods.

View Article and Find Full Text PDF

The response to ultraviolet light (UV) radiation, a natural stressor to the intestinal protozoan parasite Giardia intestinalis, was studied to deepen the understanding of how the surrounding environment affects the parasite during transmission. UV radiation at 10 mJ/cm(2) kills Giardia cysts effectively whereas trophozoites and encysting parasites can recover from UV treatment at 100 mJ/cm(2) and 50 mJ/cm(2) respectively. Staining for phosphorylated histone H2A showed that UV treatment induces double-stranded DNA breaks and flow cytometry analyses revealed that UV treatment of trophozoites induces DNA replication arrest.

View Article and Find Full Text PDF

Spironucleus salmonicida causes systemic infections in salmonid fish. It belongs to the group diplomonads, binucleated heterotrophic flagellates adapted to micro-aerobic environments. Recently we identified energy-producing hydrogenosomes in S.

View Article and Find Full Text PDF

Acquisition of the mitochondrion is a key event in the evolution of the eukaryotic cell, but diversification of the organelle has occurred during eukaryotic evolution. One example of such mitochondria-related organelles (MROs) are hydrogenosomes, which produce ATP by substrate-level phosphorylation with hydrogen as a byproduct. The diplomonad parasite Giardia intestinalis harbours mitosomes, another type of MRO.

View Article and Find Full Text PDF

Giardia intestinalis is a common cause of diarrheal disease and it consists of eight genetically distinct genotypes or assemblages (A-H). Only assemblages A and B infect humans and are suggested to represent two different Giardia species. Correlations exist between assemblage type and host-specificity and to some extent symptoms.

View Article and Find Full Text PDF

Eukaryotic microbes are highly diverse, and many lineages remain poorly studied. One such lineage, the diplomonads, a group of binucleate heterotrophic flagellates, has been studied mainly due to the impact of Giardia intestinalis, an intestinal, diarrhea-causing parasite in humans and animals. Here we describe the development of a stable transfection system for use in Spironucleus salmonicida, a diplomonad that causes systemic spironucleosis in salmonid fish.

View Article and Find Full Text PDF