Single monoclonal antibodies (mAbs) can be expressed in vivo through gene delivery of their mRNA formulated with lipid nanoparticles (LNPs). However, delivery of a mAb combination could be challenging due to the risk of heavy and light variable chain mispairing. We evaluated the pharmacokinetics of a three mAb combination against Staphylococcus aureus first in single chain variable fragment scFv-Fc and then in immunoglobulin G 1 (IgG1) format in mice.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
October 2018
The heterogeneous nature of the lungs and the range of processes affecting pulmonary drug disposition make prediction of inhaled drugs challenging. These predictions are critical, as the local exposure cannot be measured and current inhalation physiologically based pharmacokinetic (PBPK) models do not capture all necessary features. Utilizing partial differential equations, we present an inhalation PBPK model to describe the heterogeneity in both lung physiology and particle size.
View Article and Find Full Text PDFBackground: Predicting local lung tissue pharmacodynamic (PD) responses of inhaled drugs is a longstanding challenge related to the lack of experimental techniques to determine local free drug concentrations. This has prompted the use of physiologically based pharmacokinetic (PBPK) modeling to potentially predict local concentration and response. A unique opportunity for PBPK model evaluation is provided by the clinical PD data for salbutamol, which in its inhaled dosage form (400 μg), produces a higher bronchodilatory effect than in its oral dosage form (2 mg) despite lower drug concentrations in blood.
View Article and Find Full Text PDFModulating and optimizing the local pharmacokinetics of inhaled drugs by chemical design or formulation is challenged by the lack of predictive in vitro systems and in vivo techniques providing a detailed description of drug location in the lung. The present study investigated whether a new experimental setup of freshly prepared agarose-filled lung slices can be used to estimate lung retention in vitro, by comparing with in vivo lung retention after intratracheal instillation. Slices preloaded with inhaled β-adrenergic compounds (salbutamol, formoterol, salmeterol, indacaterol or AZD3199) were incubated in a large volume of buffer (w/wo monensin to assess the role of lysosomal trapping), and the amount remaining in slices at different time points was determined with liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFThe challenge of defining the concentration of unbound drug at the lung target site after inhalation limits the possibility to optimize target exposure by compound design. In this study, a novel rat lung slice methodology has been developed and applied to study drug uptake in lung tissue, and the mechanisms by which this occurs. Freshly prepared lung slices (500 μm) from drug-naive rats were incubated with drugs followed by determination of the unbound drug volume of distribution in lung (Vu,lung), as the total concentration of drug in slices divided by the buffer (unbound) concentration.
View Article and Find Full Text PDFInvestigation of pharmacokinetic/pharmacodynamic (PK/PD) relationships for inhaled drugs is challenging because of the limited possibilities of measuring tissue exposure and target engagement in the lung. The aim of this study was to develop a methodology for measuring receptor occupancy in vivo in the rat for the glucocorticoid receptor (GR) to allow more informative inhalation PK/PD studies. From AstraZeneca's chemical library of GR binders, compound 1 [N-(2-amino-2-oxo-ethyl)-3-[5-[(1R,2S)-2-(2,2-difluoropropanoylamino)-1-(2,3-dihydro-1,4-benzodioxin-6-yl)propoxy]indazol-1-yl]-N-methyl-benzamide] was identified to have properties that are useful as a tracer for GR in vitro.
View Article and Find Full Text PDF