Recent studies have shown that correlations between chromatin modifications and transcription vary among eukaryotes. This is the case for marked differences between the chromatin of the moss Physcomitrium patens and the liverwort Marchantia polymorpha. Mosses and liverworts diverged from hornworts, altogether forming the lineage of bryophytes that shared a common ancestor with land plants.
View Article and Find Full Text PDFThe mobility of transposable elements (TEs) contributes to evolution of genomes. Their uncontrolled activity causes genomic instability; therefore, expression of TEs is silenced by host genomes. TEs are marked with DNA and H3K9 methylation, which are associated with silencing in flowering plants, animals, and fungi.
View Article and Find Full Text PDFHow different intrinsic sequence variations and regulatory modifications of histones combine in nucleosomes remain unclear. To test the importance of histone variants in the organization of chromatin we investigated how histone variants and histone modifications assemble in the genome. We showed that a limited number of chromatin states divide euchromatin and heterochromatin into several subdomains.
View Article and Find Full Text PDFComplex mechanisms regulate gene dosage throughout eukaryotic life cycles. Mechanisms controlling gene dosage have been extensively studied in animals, however it is unknown how generalizable these mechanisms are to diverse eukaryotes. Here, we use the haploid plant to assess gene dosage control in its short-lived diploid embryo.
View Article and Find Full Text PDFMobile transposable elements (TEs) not only participate in genome evolution but also threaten genome integrity. In healthy cells, TEs that encode all of the components that are necessary for their mobility are specifically silenced, yet the precise mechanism remains unknown. Here, we characterize the mechanism used by a conserved class of chromatin remodelers that prevent TE mobility.
View Article and Find Full Text PDFAlternation between morphologically distinct haploid and diploid life forms is a defining feature of most plant and algal life cycles, yet the underlying molecular mechanisms that govern these transitions remain unclear. Here, we explore the dynamic relationship between chromatin accessibility and epigenetic modifications during life form transitions in Arabidopsis. The diploid-to-haploid life form transition is governed by the loss of H3K9me2 and DNA demethylation of transposon-associated -regulatory elements.
View Article and Find Full Text PDFChromatin regulation of eukaryotic genomes depends on the formation of nucleosome complexes between histone proteins and DNA. Histone variants, which are diversified by sequence or expression pattern, can profoundly alter chromatin properties. While variants in histone H2A and H3 families are well characterized, the extent of diversification of histone H2B proteins is less understood.
View Article and Find Full Text PDFEpigenetic marks are reprogrammed in the gametes to reset genomic potential in the next generation. In mammals, paternal chromatin is extensively reprogrammed through the global erasure of DNA methylation and the exchange of histones with protamines. Precisely how the paternal epigenome is reprogrammed in flowering plants has remained unclear since DNA is not demethylated and histones are retained in sperm.
View Article and Find Full Text PDFBackground: Population-based studies have shown that cardiometabolic status is associated with the amount of white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI). However, little is known of cardiometabolic risk factors in the subcortical small vessel type of dementia (SSVD), in which WMHs are one of the most prominent manifestations.
Objective: To determine whether the profile of cardiometabolic risk factors differed between SSVD, Alzheimer's disease (AD), mixed dementia (combined AD and SSVD), and healthy controls.
Heterochromatin Protein 1 (HP1) is a major regulator of chromatin structure and function. In animals, the network of proteins interacting with HP1 is mainly associated with constitutive heterochromatin marked by H3K9me3. HP1 physically interacts with the putative ortholog of the SNF2 chromatin remodeler ATRX, which controls deposition of histone variant H3.
View Article and Find Full Text PDFHistone modifications and histone variants barcode the genome and play major roles in epigenetic regulations. Chromatin immunoprecipitation (ChIP) coupled with next-generation sequencing (NGS) is a well-established method to investigate the landscape of epigenetic marks at a genomic level. Here, we describe procedures for conducting ChIP, subsequent NGS library construction, and data analysis on histone modifications and histone variants in Arabidopsis thaliana.
View Article and Find Full Text PDFMammalian genomes are spatially organized by CCCTC-binding factor (CTCF) and cohesin into chromatin loops and topologically associated domains, which have important roles in gene regulation and recombination. By binding to specific sequences, CTCF defines contact points for cohesin-mediated long-range chromosomal cis-interactions. Cohesin is also present at these sites, but has been proposed to be loaded onto DNA elsewhere and to extrude chromatin loops until it encounters CTCF bound to DNA.
View Article and Find Full Text PDFThe transcription factor Blimp-1 is necessary for the generation of plasma cells. Here we studied its functions in plasmablast differentiation by identifying regulated Blimp-1 target genes. Blimp-1 promoted the migration and adhesion of plasmablasts.
View Article and Find Full Text PDFFollowing the discovery of BRD4 as a non-oncogene addiction target in acute myeloid leukaemia (AML), bromodomain and extra terminal protein (BET) inhibitors are being explored as a promising therapeutic avenue in numerous cancers. While clinical trials have reported single-agent activity in advanced haematological malignancies, mechanisms determining the response to BET inhibition remain poorly understood. To identify factors involved in primary and acquired BET resistance in leukaemia, here we perform a chromatin-focused RNAi screen in a sensitive MLL-AF9;Nras(G12D)-driven AML mouse model, and investigate dynamic transcriptional profiles in sensitive and resistant mouse and human leukaemias.
View Article and Find Full Text PDFAmong eukaryotes, the four core histones show an extremely high conservation of their structure and form nucleosomes that compact, protect, and regulate access to genetic information. Nevertheless, in multicellular eukaryotes the two families, histone H2A and histone H3, have diversified significantly in key residues. We present a phylogenetic analysis across the green plant lineage that reveals an early diversification of the H2A family in unicellular green algae and remarkable expansions of H2A variants in flowering plants.
View Article and Find Full Text PDFNK cells can be grouped into distinct subsets that are localized to different organs and exhibit a different capacity to secrete cytokines and mediate cytotoxicity. Despite these hallmarks that reflect tissue-specific specialization in NK cells, little is known about the factors that control the development of these distinct subsets. The basic leucine zipper transcription factor Nfil3 (E4bp4) is essential for bone marrow-derived NK cell development, but it is not clear whether Nfil3 is equally important for all NK cell subsets or how it induces NK lineage commitment.
View Article and Find Full Text PDFThe transcription factor Ikaros is an essential regulator of lymphopoiesis. Here we studied its B cell-specific function by conditional inactivation of the gene encoding Ikaros (Ikzf1) in pro-B cells. B cell development was arrested at an aberrant 'pro-B cell' stage characterized by increased cell adhesion and loss of signaling via the pre-B cell signaling complex (pre-BCR).
View Article and Find Full Text PDFThe transcription factor EBF1 is essential for lineage specification in early B cell development. In this study, we demonstrate by conditional mutagenesis that EBF1 is required for B cell commitment, pro-B cell development, and subsequent transition to the pre-B cell stage. Later in B cell development, EBF1 was essential for the generation and maintenance of several mature B cell types.
View Article and Find Full Text PDFBackground: Systematic measurement of genetic interactions by combinatorial RNAi (co-RNAi) is a powerful tool for mapping functional modules and discovering components. It also provides insights into the role of epistasis on the way from genotype to phenotype. The interpretation of co-RNAi data requires computational and statistical analysis in order to detect interactions reliably and sensitively.
View Article and Find Full Text PDFThe analysis of synthetic genetic interaction networks can reveal how biological systems achieve a high level of complexity with a limited repertoire of components. Studies in yeast and bacteria have taken advantage of collections of deletion strains to construct matrices of quantitative interaction profiles and infer gene function. Yet comparable approaches in higher organisms have been difficult to implement in a robust manner.
View Article and Find Full Text PDFInnate immune signalling pathways are evolutionarily conserved between invertebrates and vertebrates. The analysis of NF-kappaB signalling in Drosophila has contributed important insights into how organisms respond to infection. Nevertheless, significant gaps remain in our understanding of how the activation of intracellular signalling elicits specific transcriptional programs.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
October 2008
Extended pedigrees are not only very useful to identify disease genes for rare Mendelian conditions, but they may also help unravel the genetics of complex diseases such as schizophrenia. In this study we performed genome-wide multipoint non-parametric linkage (NPL) score calculations using 825 microsatellites and 5,366 single nucleotide polymorphisms (SNPs), respectively, and searched for haplotypes shared by affected individuals, in three multiplex families including 29 genotyped affected individuals which in total contains 49 relative pairs useful for linkage studies. The most consistent results for microsatellites and SNPs were observed on 2q12.
View Article and Find Full Text PDFBackground: Multiple studies have shown that brain gene expression is disturbed in subjects suffering from schizophrenia. However, disentangling disease effects from alterations caused by medication is a challenging task. The main goal of this study is to find transcriptional alterations in schizophrenia that are independent of neuroleptic treatment.
View Article and Find Full Text PDFBackground: The somatic DNA molecules of spirotrichous ciliates are present as linear chromosomes containing mostly single-gene coding sequences with short 5' and 3' flanking regions. Only a few conserved motifs have been found in the flanking DNA. Motifs that may play roles in promoting and/or regulating transcription have not been consistently detected.
View Article and Find Full Text PDF