Publications by authors named "Elim Shao"

The catalytic nucleotide binding subunit (subunit A) of the vacuolar proton-translocating ATPase (or V-ATPase) is homologous to the beta-subunit of the F-ATPase but contains a 90-amino acid insert not present in the beta-subunit, termed the nonhomologous region. We previously demonstrated that mutations in this region lead to changes in coupling of proton transport and ATPase activity and to inhibition of in vivo dissociation of the V-ATPase complex, an important regulatory mechanism (Shao, E., Nishi T.

View Article and Find Full Text PDF

Subunit A is the catalytic nucleotide binding subunit of the vacuolar proton-translocating ATPase (or V-ATPase) and is homologous to subunit beta of the F(1)F(0) ATP synthase (or F-ATPase). Amino acid sequence alignment of these subunits reveals a 90-amino acid insert in subunit A (termed the non-homologous region) that is absent from subunit beta. To investigate the functional role of this region, site-directed mutagenesis has been performed on the VMA1 gene that encodes subunit A in yeast.

View Article and Find Full Text PDF

The vacuolar (H(+))-ATPases (or V-ATPases) are ATP-dependent proton pumps that function to acidify intracellular compartments in eukaryotic cells. This acidification is essential for such processes as receptor-mediated endocytosis, intracellular targeting of lysosomal enzymes, protein processing and degradation and the coupled transport of small molecules. V-ATPases in the plasma membrane of specialized cells also function in such processes as renal acidification, bone resorption and pH homeostasis.

View Article and Find Full Text PDF