A rare type of autosomal recessive skeletal disorder, known as microcephalic osteodysplastic primordial dwarfism (MOPD) type II, causes a wide range of clinical abnormalities, including skeletal dysplasia, microcephaly, abnormal skin pigmentation, insulin resistance, typical facial features, and severe tooth deformities. Given the diverse manifestations of MOPD disorders and the overlapping clinical characteristics among primordial dwarfism (PD) subtypes, mutation analysis is crucial for accurate diagnosis and confirmation of MOPD II. In this study, whole-exome sequencing (WES) and GAP-PCR were employed to identify relevant genetic variants in three patients suspected of having MOPD.
View Article and Find Full Text PDFThe krüppel-like factor (KLF) family is a group of zinc finger transcription factors and contributes to different cellular processes such as differentiation, proliferation, migration, and apoptosis. While different studies show the roles of this family in skeletal development-specifically in chondrocyte and osteocyte development and bone homeostasis-there are few reviews summarizing their importance. To fill this gap, this review discusses current knowledge on different functions of the KLF family during skeletal development, including their roles in stem cell maintenance and differentiation, cell apoptosis, and cell cycle.
View Article and Find Full Text PDFBackground: Ankylosing spondylitis (AS; OMIM:106300) is a common complex inflammatory disease; in a previous study, we introduced a novel mutation in the gene (OMIM: 600514) which was associated with AS. This study is designed to investigate the potential effect of S2486G mutation on reelin secretion; additionally, we objected to evaluate the phospholipase A2 () gene (OMIM: 601690) expression and platelet-activating factor-acetylhydrolase (PAF-AH) concentration as the downstream gene and the encoded protein.
Methods: The impact of the S2486G on reelin protein secretion was investigated in CHO-K1 and HEK-293T cells by constructing wild-type and mutant plasmids.
Ankylosing spondylitis (AS) is a common complex inflammatory disease; however, up to now distinct genes with monogenic pattern have not been reported for this disease. In the present study, we report a large Iranian family with several affected members with AS. DNAs of the three affected and two healthy cases were chosen for performing whole-exome sequencing (WES).
View Article and Find Full Text PDFReelin is a large extracellular glycoprotein secreted by Cajal-Retzius cells and has a main role during brain development, especially in neuronal migration. Reelin is comprised of N-terminal F-Spondin like domain, eight tandem repeats, and a highly conserved basic C-Terminal Region (CTR). The CTR main role in the secretion of Reelin has been investigated by advertently inducing deletion in whole or a part of this region; however, the role of CTR point mutations on the secretion of Reelin is shrouded in mystery.
View Article and Find Full Text PDFObjectives: Targeted next-generation sequencing (NGS) provides a consequential opportunity to elucidate genetic factors in known diseases, particularly in profoundly heterogeneous disorders such as non-syndromic hearing loss (NSHL). Hearing impairments could be classified into syndromic and non-syndromic types. This study intended to assess the significance of mutations in these genes to the autosomal recessive/dominant non-syndromic genetic load among Iranian families.
View Article and Find Full Text PDFChitosan nanoparticles were prepared using ultrasonication methodology at specific amplitudes and times of sonication. Subsequently, small interfering RNA (siRNA) was added to the solution at predetermined values of nitrogen to phosphorous ratio (N/P), and stirring time. Employing response surfaces generated from a statistical model, the effect of sonication time and amplitude, stirring time, and N/P ratio was studied on the particle size, polydispersity, and loading efficiency of prepared siRNA/chitosan nanoparticles.
View Article and Find Full Text PDF1. Hydroxyurea (HU) is a drug used for the treatment of haemoglobinopathies. Hydroxyurea functions by upregulating γ-globin transcription and fetal haemoglobin (HbF) production in erythroid cells.
View Article and Find Full Text PDF