Effective treatment of metastatic castration resistant prostate cancer (mCRPC) remains an unmet challenge. Cabazitaxel (CBZ) is approved for mCRPC after docetaxel (DTX) failure, but the improvement in survival is only moderate (∼2 months) and patients suffer from significant side effects. Here, we report the development of a polymer based delivery system for CBZ to improve its safety and efficacy against DTX-resistant mCRPC.
View Article and Find Full Text PDFPolymer conjugation is an attractive approach for delivering insoluble and highly toxic drugs to tumors. However, most reports in the literature only disclose the optimal composition without emphasizing rational design or composition optimization to achieve maximized biological effects. In this study, we aimed to demonstrate that composition of a polymer conjugate would determine its physiochemical characteristics, tumor penetration, and, ultimately, the in vivo efficacy.
View Article and Find Full Text PDFFrequency analysis of the photoacoustic radiofrequency signals and oxygen saturation estimates were used to monitor the in-vivo response of a novel, thermosensitive liposome treatment. The liposome encapsulated doxorubicin (HaT-DOX) releasing it rapidly (<20 s) when the tumor was exposed to mild hyperthermia (43 °C). Photoacoustic imaging (VevoLAZR, 750/850 nm, 40 MHz) of EMT-6 breast cancer tumors was performed 30 min pre- and post-treatment and up to 7 days post-treatment (at 2/5/24 h timepoints).
View Article and Find Full Text PDFImaging methods capable of indicating the potential for success of an individualized treatment course, during or immediately following the treatment, could improve therapeutic outcomes. Temperature Sensitive Liposomes (TSLs) provide an effective way to deliver chemotherapeutics to a localized tumoral area heated to mild-hyperthermia (HT). The high drug levels reached in the tumor vasculature lead to increased tumor regression via the cascade of events during and immediately following treatment.
View Article and Find Full Text PDFPurpose: This study was aimed at developing a new active loading method to stably encapsulate staurosporine (STS), a water insoluble drug, into lipid-based nanoparticles (LNPs) for drug targeting to tumors.
Methods: A limited amount of DMSO was included during the active loading process to prevent precipitation and facilitate the loading of insoluble STS into the aqueous core of a LNP. The drug loading kinetics under various conditions was studied and the STS-LNPs were characterized by size, drug-to-lipid ratio, drug release kinetics and in vitro potency.
The chemotherapeutic gemcitabine was actively and stably loaded into lipid nanoparticles through the formation of a prodrug. Gemcitabine was chemically modified to increase the lipophilicity and introduce a weak base moiety for remote loading. Several derivatives were synthesized and screened for their potential to be good liposomal drug candidates for remote loading by studying their solubility, stability, cytotoxicity, and loading efficiency.
View Article and Find Full Text PDFPurpose: This study was aimed at exploring the use of liposomes to deliver aquated cisplatin (ACP), a metabolite of CDDP, with increased potency and toxicity. Three liposomal formulations were compared for delivery of ACP to a multidrug resistant tumor.
Methods: Three different liposomes (DMPC, DPPC and DSPC as the main lipid components) were loaded with ACP by the thin-film hydration method.
Cellax, a polymer-docetaxel (DTX) conjugate that self-assembled into 120 nm particles, displayed significant enhancements in safety and efficacy over native DTX across a number of primary and metastatic tumor models. Despite these exciting preclinical data, the underlying mechanism of delivery of Cellax remains elusive. Herein, we demonstrated that serum albumin efficiently adsorbed onto the Cellax particles with a 4-fold increased avidity compared to native DTX, and the uptake of Cellax by cells was primarily driven by an albumin and SPARC (secreted protein acidic and rich in cysteine, an albumin binder) dependent internalization mechanism.
View Article and Find Full Text PDFPodophyllotoxin (PPT) exhibited significant activity against P-glycoprotein mediated multidrug resistant (MDR) tumor cell lines; however, due to its poor solubility and high toxicity, PPT cannot be dosed systemically, preventing its clinical use for MDR cancer. We developed a nanoparticle dosage form of PPT by covalently conjugating PPT and polyethylene glycol (PEG) with acetylated carboxymethyl cellulose (CMC-Ac) using one-pot esterification chemistry. The polymer conjugates self-assembled into nanoparticles (NPs) of variable sizes (20-120 nm) depending on the PPT-to-PEG molar ratio (2-20).
View Article and Find Full Text PDFPancreatic ductal adenocarcinomas are characterized by the desmoplastic reaction, a dense fibrous stroma that has been shown to be supportive of tumor cell growth, invasion, and metastasis, and has been associated with resistance to chemotherapy and reduced patient survival. Here, we investigated targeted depletion of stroma for pancreatic cancer therapy via taxane nanoparticles. Cellax-DTX polymer is a conjugate of docetaxel (DTX), polyethylene glycol (PEG), and acetylated carboxymethylcellulose, a construct which condenses into well-defined 120nm particles in an aqueous solution, and is suitable for intravenous injection.
View Article and Find Full Text PDFDocetaxel (DTX) remains the only effective drug for prolonging survival and improving quality of life of metastatic castration resistant prostate cancer (mCRPC) patients. Despite some clinical successes with DTX-based therapies, advent of cumulative toxicity and development of drug resistance limit its long-term clinical application. The integration of nanotechnology for drug delivery can be exploited to overcome the major intrinsic limitations of DTX therapy for mCRPC.
View Article and Find Full Text PDFTaxanes are a class of anticancer agents with a broad spectrum and have been widely used to treat a variety of cancer. However, its long-term use has been hampered by accumulating toxicity and development of drug resistance. The most extensively reported mechanism of resistance is the overexpression of P-glycoprotein (Pgp).
View Article and Find Full Text PDFThe majority of ultrafast temperature sensitive liposome (uTSL) formulations reported in the literature deliver the highly membrane permeable drug, doxorubicin (DOX). Here we report on the study of the uTSL formulation, HaT (Heat activated cytoToxic, composed of the phospholipid DPPC and the surfactant Brij78) loaded with the water-soluble, but poorly membrane permeable anticancer drugs, gemcitabine (GEM) and oxaliplatin (OXA). The HaT formulation displayed ultrafast release of these drugs in response to temperature, whereas attempts with LTSL (Lyso-lipid Temperature Sensitive Liposome, composed of DPPC, MSPC, and DSPE-PEG) were unsuccessful.
View Article and Find Full Text PDFDocetaxel-conjugate nanoparticles, known as Cellax, were synthesized by covalently conjugating docetaxel and polyethylene glycol to acetylated carboxymethylcellulose via ester linkages, yielding a polymeric conjugate that self-assembled into 120 nm particles suitable for intravenous administration. In 4T1 and MDA-MB-231 orthotopic breast tumor models, Cellax therapy reduced α-smooth muscle actin (α-SMA) content by 82% and 70%, respectively, whereas native docetaxel and nab-paclitaxel (albumin-paclitaxel nanoparticle, Abraxane) exerted no significant antistromal activity. In Cellax-treated mice, tumor perfusion was increased by approximately 70-fold (FITC-lectin binding), tumor vascular permeability was enhanced by more than 30% (dynamic contrast-enhanced magnetic resonance imaging), tumor matrix was decreased by 2.
View Article and Find Full Text PDFCellax is a PEGylated carboxymethylcellulose conjugate of docetaxel (DTX) which condenses into a 120-nm nanoparticle, and was compared against the approved clinical taxane nanoformulation (Abraxane®) in mouse models. Cellax increased the systemic exposure of taxanes by 37× compared to Abraxane, and improved the delivery specificity: Cellax uptake was selective to the tumor, liver and spleen, with a 203× increase in tumor accumulation compared to Abraxane. The concentration of released DTX in Cellax treated tumors was well above the IC50 for at least 10 d, while paclitaxel released from Abraxane was undetectable after 24h.
View Article and Find Full Text PDFA carboxymethylcellulose-based polymer conjugate with nanoparticle forming properties (Cellax) has been shown to enhance the pharmacokinetics, specificity of biodistribution, anti-tumor efficacy and safety of docetaxel (DTX) in comparison to the Taxotere™ formulation. We examined Cellax and Taxotere efficacy in four tumor models (EMT-6, B16F10, PC3, and MDA-MB-231), and observed variances in efficacy. To explore whether differences in tumor uptake of Cellax were responsible for these effects, we incorporated superparamagnetic iron oxide nanoparticles (SPIONs) into Cellax particles to enable magnetic resonance (MR) imaging (Cellax-MR).
View Article and Find Full Text PDFRationale: Antiepileptic drugs (AEDs) have been available for many years; yet, new members of this class continue to be identified and developed due to the limitations of existing drugs, which include a propensity for cognitive impairment. However, there is little preclinical information about the cognitive effects they produce, which clinically include deficits in attention and slowing of reaction time.
Objectives: The purpose of this study was to profile two first-generation AEDs, phenytoin and valproate, and three second-generation AEDs, levetiracetam, pregabalin and lacosamide.
Lacosamide ((R)-2-acetamido-N-benzyl-3-methoxypropionamide; formerly harkoseride, SPM 927; Vimpat), has been recently approved by US and European regulatory authorities for use as add-on therapy for partial-onset seizures in adults. Because a number of anti-epileptic drugs are used to treat conditions beyond epilepsy, including anxiety, in the present study we investigated the anxiolytic potential of lacosamide in a conditioned emotional response (CER) model in rat, and the mouse marble burying assay. In each test lacosamide produced a significant effect consistent with anxiolysis, i.
View Article and Find Full Text PDF