Isotope labeling of both N and C in selected amino acids in a protein, known as sparse labeling, is an alternative to uniform labeling and is particularly useful for proteins that must be expressed using mammalian cells, including glycoproteins. High levels of enrichment in the selected amino acids enable multidimensional heteronuclear NMR measurements of glycoprotein three-dimensional structure. Mass spectrometry provides a means to quantify the degree of enrichment.
View Article and Find Full Text PDFWe investigated the light-absorption properties of brown carbon (BrC) as part of the Georgia Wildland-Fire Simulation Experiment. We constructed fuel beds representative of three ecoregions in the Southeastern U.S.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
October 2024
Uniform enrichment of N and C in proteins is commonly employed for 2D heteronuclear NMR measurements of the three-dimensional protein structure. Achieving a high degree of enrichment of both elements is important for obtaining high quality data. Uniform labeling of proteins and glycoproteins expressed in higher organisms (yeast or mammalian cell lines) is more challenging than expression in , a prokaryote that grows on simple, chemically defined media but does not provide appropriate eukaryotic modifications.
View Article and Find Full Text PDFProteoglycans (PGs), consisting of glycosaminoglycans (GAGs) linked with the core protein through a tetrasaccharide linkage region, play roles in many important biological events. The chemical synthesis of PG glycopeptides is extremely challenging. In this work, the enzymes required for synthesis of chondroitin sulfate (CS) PG (CSPG) have been expressed and the suitable sequence of enzymatic reactions has been established.
View Article and Find Full Text PDFA large proportion of human proteins contain post-translational modifications that cannot be synthesized by prokaryotes. Thus, mammalian expression systems are often employed to characterize structure/function relationships using NMR spectroscopy. Here we define the selective isotope labeling of secreted, post-translationally modified proteins using human embryonic kidney (HEK)293 cells.
View Article and Find Full Text PDFHereditary angioedema (HAE) is associated with episodic kinin-induced swelling of the skin and mucosal membranes. Most patients with HAE have low plasma C1-inhibitor activity, leading to increased generation of the protease plasma kallikrein (PKa) and excessive release of the nanopeptide bradykinin from high-molecular-weight kininogen (HK). However, disease-causing mutations in at least 10% of patients with HAE appear to involve genes for proteins other than C1-inhibitor.
View Article and Find Full Text PDFDespite the prevalence and importance of glycoproteins in human biology, methods for isotope labeling suffer significant limitations. Common prokaryotic platforms do not produce mammalian post-translation modifications that are essential to the function of many human glycoproteins, including immunoglobulin G1 (IgG1). Mammalian expression systems require complex media and thus introduce significant costs to achieve uniform labeling.
View Article and Find Full Text PDFBackground: A cell exhibits a variety of responses to internal and external cues. These responses are possible, in part, due to the presence of an elaborate gene regulatory network (GRN) in every single cell. In the past 20 years, many groups worked on reconstructing the topological structure of GRNs from large-scale gene expression data using a variety of inference algorithms.
View Article and Find Full Text PDFIn Escherichia coli, translocation of RNA polymerase (RNAP) during transcription introduces supercoiling to DNA, which influences the initiation and elongation behaviors of RNAP. To quantify the role of supercoiling in transcription regulation, we developed a spatially resolved supercoiling model of transcription. The integrated model describes how RNAP activity feeds back with the local DNA supercoiling and how this mechanochemical feedback controls transcription, subject to topoisomerase activities and stochastic topological domain formation.
View Article and Find Full Text PDFThe predominant protein expression host for NMR spectroscopy is Escherichia coli, however, it does not synthesize appropriate post-translation modifications required for mammalian protein function and is not ideal for expressing naturally secreted proteins that occupy an oxidative environment. Mammalian expression platforms can address these limitations; however, these are not amenable to cost-effective uniform N labeling resulting from highly complex growth media requirements. Yeast expression platforms combine the simplicity of bacterial expression with the capabilities of mammalian platforms, however yeasts require optimization prior to isotope labeling.
View Article and Find Full Text PDFThe antibody-binding Fc γ receptors (FcγRs) trigger life-saving immune responses and many therapeutic monoclonal antibodies require FcγR engagement for full effect. One proven strategy to improve the efficacy of antibody therapies is to increase receptor binding affinity, in particular binding to FcγRIIIa/CD16a. Currently, affinities are measured using recombinantly-expressed soluble extracellular FcγR domains and CD16a-mediated antibody-dependent immune responses are characterized using cultured cells.
View Article and Find Full Text PDFCells use genetic switches to shift between alternate stable gene expression states, e.g., to adapt to new environments or to follow a developmental pathway.
View Article and Find Full Text PDFSingle-molecule localization microscopy (SMLM) relies on the blinking behavior of a fluorophore, which is the stochastic switching between fluorescent and dark states. Blinking creates multiple localizations belonging to the same fluorophore, confounding quantitative analyses and interpretations. Here we present a method, termed distance distribution correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations.
View Article and Find Full Text PDFNervous systems are incredibly diverse, with myriad neuronal subtypes defined by gene expression. How binary and graded fate characteristics are patterned across tissues is poorly understood. Expression of opsin photopigments in the cone photoreceptors of the mouse retina provides an excellent model to address this question.
View Article and Find Full Text PDFEnhanced sampling methods, such as forward flux sampling (FFS), have great capacity for accelerating stochastic simulations of nonequilibrium biochemical systems involving rare events. However, the description of the tradeoffs between simulation efficiency and error in FFS remains incomplete. We present a novel and mathematically rigorous analysis of the errors in FFS that, for the first time, covers the contribution of every phase of the simulation.
View Article and Find Full Text PDFLive-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging.
View Article and Find Full Text PDFEach individual perceives the world in a unique way, but little is known about the genetic basis of variation in sensory perception. In the fly eye, the random mosaic of color-detecting R7 photoreceptor subtypes is determined by stochastic on/off expression of the transcription factor Spineless (Ss). In a genome-wide association study, we identified a naturally occurring insertion in a regulatory DNA element in that lowers the ratio of Ss to Ss cells.
View Article and Find Full Text PDFUnlabelled: Data-parallel programming techniques can dramatically decrease the time needed to analyze large datasets. While these methods have provided significant improvements for sequencing-based analyses, other areas of biological informatics have not yet adopted them. Here, we introduce Biospark, a new framework for performing data-parallel analysis on large numerical datasets.
View Article and Find Full Text PDFChromatin remodelers are essential for establishing and maintaining the placement of nucleosomes along genomic DNA. Yet how chromatin remodelers recognize and respond to distinct chromatin environments surrounding nucleosomes is poorly understood. Here, we use Lac repressor as a tool to probe how a DNA-bound factor influences action of the Chd1 remodeler.
View Article and Find Full Text PDFMany vital eukaryotic cellular functions require the cell to respond to a directional gradient of a signaling molecule. The first two steps in any eukaryotic chemotactic/chemotropic pathway are gradient detection and cell polarization. Like many processes, such chemotactic and chemotropic decisions are made using a relatively small number of molecules and are thus susceptible to internal and external fluctuations during signal transduction.
View Article and Find Full Text PDFBackground: Transcription in Escherichia coli generates positive supercoiling in the DNA, which is relieved by the enzymatic activity of gyrase. Recently published experimental evidence suggests that transcription initiation and elongation are inhibited by the buildup of positive supercoiling. It has therefore been proposed that intermittent binding of gyrase plays a role in transcriptional bursting.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2015
Cellular processes do not follow deterministic rules; even in identical environments genetically identical cells can make random choices leading to different phenotypes. This randomness originates from fluctuations present in the biomolecular interaction networks. Most previous work has been focused on the intrinsic noise (IN) of these networks.
View Article and Find Full Text PDFSimulation of cellular processes with the reaction-diffusion master equation (RDME) is a computationally expensive task. Our previous software enabled simulation of inhomogeneous biochemical systems for small bacteria over long time scales using the MPD-RDME method on a single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on a single GPU.
View Article and Find Full Text PDFCurr Opin Struct Biol
April 2014
Whole-cell modeling has the potential to play a major role in revolutionizing our understanding of cellular biology over the next few decades. A computational model of the entire cell would allow cellular biologists to integrate data from many disparate sources in a single consistent framework. Such a comprehensive model would be useful both for hypothesis testing and in the discovery of new behaviors that emerge from complex biological networks.
View Article and Find Full Text PDFPhys Rev Lett
December 2013
We present a novel approach allowing the study of rare events like fixation under fluctuating environments, modeled as extrinsic noise, in evolutionary processes characterized by the dominance of one species. Our treatment consists of mapping the system onto an auxiliary model, exhibiting metastable species coexistence, that can be analyzed semiclassically. This approach enables us to study the interplay between extrinsic and demographic noise on the statistics of interest.
View Article and Find Full Text PDF